Note
Go to the end to download the full example code.
Model - loadmodelΒΆ
[[Model]]
Model(mysine)
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 25
# data points = 101
# variables = 3
chi-square = 7.68903767
reduced chi-square = 0.07845957
Akaike info crit = -254.107813
Bayesian info crit = -246.262451
R-squared = 0.97252133
[[Variables]]
amp: 2.32733694 +/- 0.03950824 (1.70%) (init = 3)
freq: 0.50098739 +/- 5.7726e-04 (0.12%) (init = 0.52)
shift: 0.53605324 +/- 0.03383110 (6.31%) (init = 0)
[[Correlations]] (unreported correlations are < 0.100)
C(freq, shift) = -0.8663
# <examples/doc_model_loadmodel.py>
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
from lmfit.model import load_model
if not os.path.exists('sinemodel.sav'):
os.system(f"{sys.executable} doc_model_savemodel.py")
def mysine(x, amp, freq, shift):
return amp * np.sin(x*freq + shift)
data = np.loadtxt('sinedata.dat')
x = data[:, 0]
y = data[:, 1]
model = load_model('sinemodel.sav', funcdefs={'mysine': mysine})
params = model.make_params(amp=dict(value=3, min=0),
freq=0.52,
shift=dict(value=0, min=-1, max=1))
result = model.fit(y, params, x=x)
print(result.fit_report())
plt.plot(x, y, 'o')
plt.plot(x, result.best_fit, '-')
plt.show()
# <end examples/doc_model_loadmodel.py>
Total running time of the script: (0 minutes 0.175 seconds)