Modeling Data and Curve Fitting

A common use of least-squares minimization is curve fitting, where one has a parametrized model function meant to explain some phenomena and wants to adjust the numerical values for the model so that it most closely matches some data. With scipy, such problems are typically solved with scipy.optimize.curve_fit, which is a wrapper around scipy.optimize.least_squares. While minimize() can be used for curve-fitting problems, it is more general and not aimed specifically at this common use-case.

The Model class in lmfit provides a simple and flexible approach to curve-fitting problems. Like scipy.optimize.curve_fit, a Model uses a model function – a function that is meant to calculate a model for some phenomenon – and then uses that to best match an array of supplied data. Beyond that similarity, the Model interface is rather different from scipy.optimize.curve_fit. These differences include a) being class-based and so having multiple methods for working with Model`s, b) using :class:`~lmfit.parameter.Parameters, and all of the advantages they provide, and c) being easy to combine into composite models.

In addition to allowing you to turn any model function into a curve-fitting model, lmfit also provides canonical definitions for many known line shapes such as Gaussian or Lorentzian peaks and Exponential decays that are widely used in many scientific domains. These are available in the models module that will be discussed in more detail in the next chapter (Built-in Fitting Models in the models module). We mention it here as you may want to consult that list before writing your own model. For now, we focus on turning Python functions into high-level fitting models with the Model class, and using these to fit data.

Motivation and simple example: Fit data to Gaussian profile

We start with a simple and common example of fitting data to a Gaussian peak. As we will see, there is a built-in GaussianModel class that can help do this, but here we’ll build our own. We start with a simple definition of the model function:

from numpy import exp, linspace, random


def gaussian(x, amp, cen, wid):
    return amp * exp(-(x-cen)**2 / wid)

With that function, we can easily calculate a model for our data, and the goal here is to use this function to fit to data \(y(x)\) represented by the arrays y and x. With scipy.optimize.curve_fit, this would be:

from scipy.optimize import curve_fit

x = linspace(-10, 10, 101)
y = gaussian(x, 2.33, 0.21, 1.51) + random.normal(0, 0.2, x.size)

init_vals = [1, 0, 1]  # for [amp, cen, wid]
best_vals, covar = curve_fit(gaussian, x, y, p0=init_vals)

That is, we create data (maybe adding a little noise), make an initial guess of the model values, and run scipy.optimize.curve_fit with the model function, data arrays, and initial guesses. The results returned are the optimal values for the parameters and the covariance matrix.

With lmfit, we create a Model that wraps the gaussian model function, which automatically generates the appropriate residual function, and determines the corresponding parameter names from the function signature itself:

from lmfit import Model

gmodel = Model(gaussian)
print(f'parameter names: {gmodel.param_names}')
print(f'independent variables: {gmodel.independent_vars}')
parameter names: ['amp', 'cen', 'wid']
independent variables: ['x']

As you can see, the Model gmodel determined the names of the parameters and the independent variables. By default, the first argument of the function is taken as the independent variable, held in independent_vars, and the rest of the functions positional arguments (and, in certain cases, keyword arguments – see below) are used for Parameter names. Thus, for the gaussian function above, the independent variable is x, and the parameters are named amp, cen, and wid. These are all taken directly from the signature of the model function. As discussed below, you can modify the default assignment of independent variable / arguments and specify yourself what the independent variable.

Although the model determines what the parameters should be named, Parameters are not created when the model is created. That is, the model knows the parameters names, but nothing about the scale and range of your data. You will have to make Parameters for a Model yourself. To help you create Parameters for a Model, each model has a make_params() method that will generate parameters with the expected names. You can use this method or create Parameters some other way (say, with create_params()), but you will have to create Parameters and assign initial values for all Parameters. You can also assign other attributes when doing this:

params = gmodel.make_params()

This creates the Parameters but does not automatically give them initial values since it has no idea what the scale should be. If left unspecified, the initial values will be -Inf, which will generally fail to give useful results. You can set initial values for parameters with keyword arguments to make_params():

params = gmodel.make_params(cen=0.3, amp=3, wid=1.25)

or assign them (and other parameter properties) after the Parameters class has been created.

A Model has several methods associated with it. For example, one can use the eval() method to evaluate the model or the fit() method to fit data to this model with a Parameter object. Both of these methods can take explicit keyword arguments for the parameter values. For example, one could use eval() to calculate the predicted function:

x_eval = linspace(0, 10, 201)
y_eval = gmodel.eval(params, x=x_eval)

or with:

y_eval = gmodel.eval(x=x_eval, cen=6.5, amp=100, wid=2.0)

Admittedly, this a slightly long-winded way to calculate a Gaussian function, given that you could have called your gaussian function directly. But now that the model is set up, we can use its fit() method to fit this model to data, as with:

result = gmodel.fit(y, params, x=x)

or with:

result = gmodel.fit(y, x=x, cen=0.5, amp=10, wid=2.0)

Putting everything together, included in the examples folder with the source code, is:

# <examples/doc_model_gaussian.py>
import matplotlib.pyplot as plt
from numpy import exp, loadtxt, pi, sqrt

from lmfit import Model

data = loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]


def gaussian(x, amp, cen, wid):
    """1-d gaussian: gaussian(x, amp, cen, wid)"""
    return (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2))


gmodel = Model(gaussian)
result = gmodel.fit(y, x=x, amp=5, cen=5, wid=1)

print(result.fit_report())

plt.plot(x, y, 'o')
plt.plot(x, result.init_fit, '--', label='initial fit')
plt.plot(x, result.best_fit, '-', label='best fit')
plt.legend()
plt.show()
# <end examples/doc_model_gaussian.py>

which is pretty compact and to the point. The returned result will be a ModelResult object. As we will see below, this has many components, including a fit_report() method, which will show:

[[Model]]
    Model(gaussian)
[[Fit Statistics]]
    # fitting method   = leastsq
    # function evals   = 33
    # data points      = 101
    # variables        = 3
    chi-square         = 3.40883599
    reduced chi-square = 0.03478404
    Akaike info crit   = -336.263713
    Bayesian info crit = -328.418352
    R-squared          = 0.98533348
[[Variables]]
    amp:  8.88021893 +/- 0.11359522 (1.28%) (init = 5)
    cen:  5.65866102 +/- 0.01030495 (0.18%) (init = 5)
    wid:  0.69765478 +/- 0.01030505 (1.48%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
    C(amp, wid) = +0.5774

As the script shows, the result will also have init_fit for the fit with the initial parameter values and a best_fit for the fit with the best fit parameter values. These can be used to generate the following plot:

_images/model_12_0.svg

which shows the data in blue dots, the best fit as a solid green line, and the initial fit as a dashed orange line.

Note that the model fitting was really performed with:

gmodel = Model(gaussian)
result = gmodel.fit(y, params, x=x, amp=5, cen=5, wid=1)

These lines clearly express that we want to turn the gaussian function into a fitting model, and then fit the \(y(x)\) data to this model, starting with values of 5 for amp, 5 for cen and 1 for wid. In addition, all the other features of lmfit are included: Parameters can have bounds and constraints and the result is a rich object that can be reused to explore the model fit in detail.

The Model class

The Model class provides a general way to wrap a pre-defined function as a fitting model.

class Model(func, independent_vars=None, param_names=None, nan_policy='raise', prefix='', name=None, **kws)

Create a model from a user-supplied model function.

The model function will normally take an independent variable (generally, the first argument) and a series of arguments that are meant to be parameters for the model. It will return an array of data to model some data as for a curve-fitting problem.

Parameters:
  • func (callable) – Function to be wrapped.

  • independent_vars (list of str, optional) – Arguments to func that are independent variables (default is None).

  • param_names (list of str, optional) – Names of arguments to func that are to be made into parameters (default is None).

  • nan_policy ({'raise', 'propagate', 'omit'}, optional) – How to handle NaN and missing values in data. See Notes below.

  • prefix (str, optional) – Prefix used for the model.

  • name (str, optional) – Name for the model. When None (default) the name is the same as the model function (func).

  • **kws (dict, optional) – Additional keyword arguments to pass to model function.

Notes

1. The model function must return an array that will be the same size as the data being modeled.

2. Parameter names are inferred from the function arguments by default, and a residual function is automatically constructed.

3. Specifying independent_vars here will explicitly name the independent variables for the Model. in contrast, param_names is meant to help infer Parameter names for keyword arguments defined with **kws in the Model function.

4. nan_policy sets what to do when a NaN or missing value is seen in the data. Should be one of:

  • ‘raise’ : raise a ValueError (default)

  • ‘propagate’ : do nothing

  • ‘omit’ : drop missing data

Examples

The model function will normally take an independent variable (generally, the first argument) and a series of arguments that are meant to be parameters for the model. Thus, a simple peak using a Gaussian defined as:

>>> import numpy as np
>>> def gaussian(x, amp, cen, wid):
...     return amp * np.exp(-(x-cen)**2 / wid)

can be turned into a Model with:

>>> gmodel = Model(gaussian)

this will automatically discover the names of the independent variables and parameters:

>>> print(gmodel.param_names, gmodel.independent_vars)
['amp', 'cen', 'wid'], ['x']

Model class Methods

Model.eval(params=None, **kwargs)

Evaluate the model with supplied parameters and keyword arguments.

Parameters:
  • params (Parameters, optional) – Parameters to use in Model.

  • **kwargs (optional) – Additional keyword arguments to pass to model function.

Returns:

Value of model given the parameters and other arguments.

Return type:

numpy.ndarray, float, int or complex

Notes

1. if params is None, the values for all parameters are expected to be provided as keyword arguments.

2. If params is given, and a keyword argument for a parameter value is also given, the keyword argument will be used in place of the value in the value in params.

3. all non-parameter arguments for the model function, including all the independent variables will need to be passed in using keyword arguments.

4. The return types are generally numpy.ndarray, but may depends on the model function and input independent variables. That is, return values may be Python float, int, or complex values.

Model.fit(data, params=None, weights=None, method='leastsq', iter_cb=None, scale_covar=True, verbose=False, fit_kws=None, nan_policy=None, calc_covar=True, max_nfev=None, coerce_farray=True, **kwargs)

Fit the model to the data using the supplied Parameters.

Parameters:
  • data (array_like) – Array of data to be fit.

  • params (Parameters, optional) – Parameters to use in fit (default is None).

  • weights (array_like, optional) – Weights to use for the calculation of the fit residual [i.e., weights*(data-fit)]. Default is None; must have the same size as data.

  • method (str, optional) – Name of fitting method to use (default is ‘leastsq’).

  • iter_cb (callable, optional) – Callback function to call at each iteration (default is None).

  • scale_covar (bool, optional) – Whether to automatically scale the covariance matrix when calculating uncertainties (default is True).

  • verbose (bool, optional) – Whether to print a message when a new parameter is added because of a hint (default is True).

  • fit_kws (dict, optional) – Options to pass to the minimizer being used.

  • nan_policy ({'raise', 'propagate', 'omit'}, optional) – What to do when encountering NaNs when fitting Model.

  • calc_covar (bool, optional) – Whether to calculate the covariance matrix (default is True) for solvers other than ‘leastsq’ and ‘least_squares’. Requires the numdifftools package to be installed.

  • max_nfev (int or None, optional) – Maximum number of function evaluations (default is None). The default value depends on the fitting method.

  • coerce_farray (bool, optional) – Whether to coerce data and independent data to be ndarrays with dtype of float64 (or complex128). If set to False, data and independent data are not coerced at all, but the output of the model function will be. (default is True)

  • **kwargs (optional) – Arguments to pass to the model function, possibly overriding parameters.

Return type:

ModelResult

Notes

1. if params is None, the values for all parameters are expected to be provided as keyword arguments. Mixing params and keyword arguments is deprecated (see Model.eval).

2. all non-parameter arguments for the model function, including all the independent variables will need to be passed in using keyword arguments.

3. Parameters are copied on input, so that the original Parameter objects are unchanged, and the updated values are in the returned ModelResult.

Examples

Take t to be the independent variable and data to be the curve we will fit. Use keyword arguments to set initial guesses:

>>> result = my_model.fit(data, tau=5, N=3, t=t)

Or, for more control, pass a Parameters object.

>>> result = my_model.fit(data, params, t=t)
Model.guess(data, x, **kws)

Guess starting values for the parameters of a Model.

This is not implemented for all models, but is available for many of the built-in models.

Parameters:
  • data (array_like) – Array of data (i.e., y-values) to use to guess parameter values.

  • x (array_like) – Array of values for the independent variable (i.e., x-values).

  • **kws (optional) – Additional keyword arguments, passed to model function.

Returns:

Initial, guessed values for the parameters of a Model.

Return type:

Parameters

Raises:

NotImplementedError – If the guess method is not implemented for a Model.

Notes

Should be implemented for each model subclass to run self.make_params(), update starting values and return a Parameters object.

Changed in version 1.0.3: Argument x is now explicitly required to estimate starting values.

Model.make_params(verbose=False, **kwargs)

Create a Parameters object for a Model.

Parameters:
  • verbose (bool, optional) – Whether to print out messages (default is False).

  • **kwargs (optional) –

    Parameter names and initial values or dictionaries of

    values and attributes.

Returns:

params – Parameters object for the Model.

Return type:

Parameters

Notes

  1. Parameter values can be numbers (floats or ints) to set the parameter value, or dictionaries with any of the following keywords: value, vary, min, max, expr, brute_step, is_init_value to set those parameter attributes.

  2. This method will also apply any default values or parameter hints that may have been defined for the model.

Example

>>> gmodel = GaussianModel(prefix='peak_') + LinearModel(prefix='bkg_')
>>> gmodel.make_params(peak_center=3200, bkg_offset=0, bkg_slope=0,
...                    peak_amplitdue=dict(value=100, min=2),
...                    peak_sigma=dict(value=25, min=0, max=1000))
Model.set_param_hint(name, **kwargs)

Set hints to use when creating parameters with make_params().

The given hint can include optional bounds and constraints (value, vary, min, max, expr), which will be used by Model.make_params() when building default parameters.

While this can be used to set initial values, Model.make_params or the function create_params should be preferred for creating parameters with initial values.

The intended use here is to control how a Model should create parameters, such as setting bounds that are required by the mathematics of the model (for example, that a peak width cannot be negative), or to define common constrained parameters.

Parameters:
  • name (str) – Parameter name, can include the models prefix or not.

  • **kwargs (optional) –

    Arbitrary keyword arguments, needs to be a Parameter attribute. Can be any of the following:

    • valuefloat, optional

      Numerical Parameter value.

    • varybool, optional

      Whether the Parameter is varied during a fit (default is True).

    • minfloat, optional

      Lower bound for value (default is -numpy.inf, no lower bound).

    • maxfloat, optional

      Upper bound for value (default is numpy.inf, no upper bound).

    • exprstr, optional

      Mathematical expression used to constrain the value during the fit.

Example

>>> model = GaussianModel()
>>> model.set_param_hint('sigma', min=0)

See Using parameter hints.

Model.print_param_hints(colwidth=8)

Print a nicely aligned text-table of parameter hints.

Parameters:

colwidth (int, optional) – Width of each column, except for first and last columns.

See Using parameter hints.

Model.post_fit(fitresult)

function that is called just after fit, can be overloaded by subclasses to add non-fitting ‘calculated parameters’

See Using uncertainties in the fitted parameters for post-fit calculations.

Model class Attributes

func

The model function used to calculate the model.

independent_vars

List of strings for names of the independent variables.

nan_policy

Describes what to do for NaNs that indicate missing values in the data. The choices are:

  • 'raise': Raise a ValueError (default)

  • 'propagate': Do not check for NaNs or missing values. The fit will try to ignore them.

  • 'omit': Remove NaNs or missing observations in data. If pandas is installed, pandas.isnull() is used, otherwise numpy.isnan() is used.

name

Name of the model, used only in the string representation of the model. By default this will be taken from the model function.

opts

Extra keyword arguments to pass to model function. Normally this will be determined internally and should not be changed.

param_hints

Dictionary of parameter hints. See Using parameter hints.

param_names

List of strings of parameter names.

prefix

Prefix used for name-mangling of parameter names. The default is ''. If a particular Model has arguments amplitude, center, and sigma, these would become the parameter names. Using a prefix of 'g1_' would convert these parameter names to g1_amplitude, g1_center, and g1_sigma. This can be essential to avoid name collision in composite models.

Determining parameter names and independent variables for a function

The Model created from the supplied function func will guess which function arguments of the model function should be made into Parameters object, and which should be considered non-varying independent variables that need to be specified when evaluating or fitting with the Model.

By convention and by default, the first argument to the model function is taken to be the independent variable – this is often the x value for the model. You can explicitly set this to be a different functional argument, and will need to do so if the independent variable is not first in the list, or if there is more than one independent variable. Since curve fitting most commonly fits some function \(y(x)\), it is common for the independent variable to be a numpy float ndarray of the same length as the data to be fit. While this is common, it is not actually required. The independent variable does not not need to be an ndarray, and can be any Python data type, and it is fine to have multiple independent variables.

Changed in version 1.2.3.

By convention and default, the positional arguments (that is, those without default values specified in the function signature) other than the first argument are marked as being Parameters – these will have an invalid default value (or -Inf) that must be supplied before using the Parameter. Keyword arguments to the model function that have numerical values will also be marked as being Parameters, and the supplied numerical value will be used as the default value for that Parameter.

Keyword arguments to the model function that have non-numerical values (including None, False, and True, but also strings) will be marked as being independent variables and their default value will be stored and used unless overwritten. There is some ambiguity for function arguments that have a value supplied in the function signature of None, False, or True. These function arguments are tagged as independent variables, but can be made into a Parameter with Model.make_params(), in which case, they will be treated as variables. An example is given below.

Explicitly specifying independent_vars

As we saw for the Gaussian example above, creating a Model from a function is fairly easy. Let’s try another one:

import numpy as np
from lmfit import Model


def decay(t, tau, N):
   return N*np.exp(-t/tau)


decay_model = Model(decay)
print(f'independent variables: {decay_model.independent_vars}')

params = decay_model.make_params()
print('\nParameters:')
for pname, par in params.items():
    print(pname, par)
independent variables: ['t']

Parameters:
tau <Parameter 'tau', value=-inf, bounds=[-inf:inf]>
N <Parameter 'N', value=-inf, bounds=[-inf:inf]>

Here, t is assumed to be the independent variable because it is the first argument to the function. The other function arguments are used to create parameters for the model.

If you want tau to be the independent variable in the above example, you can say so:

decay_model = Model(decay, independent_vars=['tau'])
print(f'independent variables: {decay_model.independent_vars}')

params = decay_model.make_params()
print('\nParameters:')
for pname, par in params.items():
    print(pname, par)
independent variables: ['tau']

Parameters:
t <Parameter 't', value=-inf, bounds=[-inf:inf]>
N <Parameter 'N', value=-inf, bounds=[-inf:inf]>

You can also supply multiple values for multi-dimensional functions with multiple independent variables. In fact, the meaning of independent variable here is simple, and based on how it treats arguments of the function you are modeling:

independent variable

A function argument that is not a parameter or otherwise part of the model, and that will be required to be explicitly provided as a keyword argument for each fit with Model.fit() or evaluation with Model.eval().

Note that independent variables are not required to be arrays, or even floating point numbers. Dictionaries or Objects from user-defined classes can be independent variables.

Functions with keyword arguments

If the model function had keyword parameters, these would be turned into Parameters if the supplied default value was a valid number:

def decay2(t, tau, N=10, check_positive=False):
    if check_positive:
        arg = abs(t)/max(1.e-9, abs(tau))
    else:
        arg = t/tau
    return N*np.exp(arg)


mod = Model(decay2)
print(f'independent variables: {mod.independent_vars}')

params = mod.make_params()
print('Parameters:')
for pname, par in params.items():
    print(pname, par)
independent variables: ['t', 'check_positive']
Parameters:
tau <Parameter 'tau', value=-inf, bounds=[-inf:inf]>
N <Parameter 'N', value=10, bounds=[-inf:inf]>

Here, check_positive is listed as an independent variable, because it has a default value of False.

The function argument N is expected to be an Parameter, because it has a numerical default value. This value will be kept as the default value when building the Parameters. Also, note that the default value for tau is -np.inf, which will need to be fixed before really be used.

Function arguments with default values of None, False, and True are slightly ambiguous whether they should be considered independent variables or Parameters. That is, in many contexts (including basic arithmetic) True acts like the integer 1, and False acts like 0. A default value of None might be used to signal some default behavior. For example, the builtin lmfit.lineshapes.voigt() function is defined as

def voigt(x, amplitude=1.0, center=0.0, sigma=1.0, gamma=None):
    """Return a 1-dimensional Voigt function.
        ...
    """
    if gamma is None:
        gamma = sigma
    z = (x-center + 1j*gamma) / max(tiny, (sigma*s2))
    return amplitude*real(wofz(z)) / max(tiny, (sigma*s2pi))

mod = Model(voigt)
print(f'independent variables: {mod.independent_vars}')

params = mod.make_params(amplitude=10, center=5, sigma=2)

# or
params2 = mod.make_params(amplitude=10, center=5, sigma=2, gamma=1.5)
independent variables: ['x', 'gamma']

In this case, gamma will be listed as an independent variable. But because its default value is None (or True or False) it can be made a Parameter that can be varied independently as shown above. Of course, whether this makes sense depends on the details of the implementation of the model function: it can be sensible (and even intended) for gamma in the voigt function above to be a numerical value that could be a variable Parameter, but it is not sensible for the check_positive argument in decay2 to be variable that can take any numeric value.

Defining a prefix for the Parameters

As we will see below when combining models, it is sometimes necessary to decorate the parameter names in the model, but still have them be correctly used in the underlying model function. This would be necessary, for example, if two parameters in a composite model (see Composite Models : adding (or multiplying) Models or examples in the next chapter) would have the same name. To avoid this, we can add a prefix to the Model which will automatically do this mapping for us.

def myfunc(x, amplitude=1, center=0, sigma=1):
    # function definition, for now just ``pass``
    pass


mod = Model(myfunc, prefix='f1_')
params = mod.make_params()
print('Parameters:')
for pname, par in params.items():
    print(pname, par)
Parameters:
f1_amplitude <Parameter 'f1_amplitude', value=1, bounds=[-inf:inf]>
f1_center <Parameter 'f1_center', value=0, bounds=[-inf:inf]>
f1_sigma <Parameter 'f1_sigma', value=1, bounds=[-inf:inf]>

You would refer to these parameters as f1_amplitude and so forth, and the model will know to map these to the amplitude argument of myfunc.

Initializing model parameter values

As mentioned above, creating a model does not automatically create the corresponding Parameters. These can be created with either the create_params() function, or the Model.make_params() method of the corresponding instance of Model.

When creating Parameters, each parameter is created with invalid initial value of -Inf if it is not set explicitly. That is to say, parameter values must be initialized in order for the model to evaluate a finite result or used in a fit. There are a few different ways to do this:

  1. You can supply initial values in the definition of the model function.

  2. You can initialize the parameters when creating parameters with Model.make_params().

  3. You can create a Parameters object with Parameters or create_params().

  4. You can supply initial values for the parameters when calling Model.eval() or Model.fit() methods.

Generally, using the Model.make_params() method is recommended. The methods described above can be mixed, allowing you to overwrite initial values at any point in the process of defining and using the model.

Initializing values in the function definition

To supply initial values for parameters in the definition of the model function, you can simply supply a default value:

def myfunc(x, a=1, b=0):
    return a*x + 10*a - b

instead of using:

def myfunc(x, a, b):
    return a*x + 10*a - b

This has the advantage of working at the function level – all parameters with keywords can be treated as options. It also means that some default initial value will always be available for the parameter.

Initializing values with Model.make_params()

When creating parameters with Model.make_params() you can specify initial values. To do this, use keyword arguments for the parameter names. You can either set initial values as numbers (floats or ints) or as dictionaries with keywords of (value, vary, min, max, expr, brute_step, and is_init_value) to specify these parameter attributes.

mod = Model(myfunc)

# simply supply initial values
pars = mod.make_params(a=3, b=0.5)

# supply initial values, attributes for bounds, etcetera:
pars_bounded = mod.make_params(a=dict(value=3, min=0),
                               b=dict(value=0.5, vary=False))

Creating a Parameters object directly

You can also create your own Parameters directly using create_params(). This is independent of using the Model class, but is essentially equivalent to Model.make_params() except with less checking of errors for model prefixes and so on.

from lmfit import create_params

mod = Model(myfunc)

# simply supply initial values
pars = create_params(a=3, b=0.5)

# supply initial values and attributes for bounds, etc:
pars_bounded = create_params(a=dict(value=3, min=0),
                             b=dict(value=0.5, vary=False))

Because less error checking is done, Model.make_params() should probably be preferred when using Models.

Initializing parameter values for a model with keyword arguments

Finally, you can explicitly supply initial values when using a model. That is, as with Model.make_params(), you can include values as keyword arguments to either the Model.eval() or Model.fit() methods:

x = linspace(0, 10, 100)
y_eval = mod.eval(x=x, a=7.0, b=-2.0)
y_sim = y_eval + random.normal(0, 0.2, x.size)
out = mod.fit(y_sim, pars, x=x, a=3.0, b=0.0)

These approaches to initialization provide many opportunities for setting initial values for parameters. The methods can be combined, so that you can set parameter hints but then change the initial value explicitly with Model.fit().

Using parameter hints

After a model has been created, but prior to creating parameters with Model.make_params(), you can define parameter hints for that model. This allows you to set other parameter attributes for bounds, whether it is varied in the fit, or set a default constraint expression for a parameter. You can also set the initial value, but that is not really the intention of the method, which is to really to let you say that about the idealized Model, for example that some values may not make sense for some parameters, or that some parameters might be a small change from another parameter and so be fixed or constrained by default.

To set a parameter hint, you can use Model.set_param_hint(), as with:

mod = Model(myfunc)
mod.set_param_hint('bounded_parameter', min=0, max=1.0)
pars = mod.make_params()

Parameter hints are discussed in more detail in section Using parameter hints.

Parameter hints are stored in a model’s param_hints attribute, which is simply a nested dictionary:

print('Parameter hints:')
for pname, par in mod.param_hints.items():
    print(pname, par)
Parameter hints:
bounded_parameter {'min': 0, 'max': 1.0}

You can change this dictionary directly or use the Model.set_param_hint() method. Either way, these parameter hints are used by Model.make_params() when making parameters.

Parameter hints also allow you to create new parameters. This can be useful to make derived parameters with constraint expressions. For example to get the full-width at half maximum of a Gaussian model, one could use a parameter hint of:

mod = Model(gaussian)
mod.set_param_hint('wid', min=0)
mod.set_param_hint('fwhm', expr='2.3548*wid')
params = mod.make_params(amp={'value': 10, 'min':0.1, 'max':2000},
                         cen=5.5, wid=1.25)
params.pretty_print()
Name     Value      Min      Max   Stderr     Vary     Expr Brute_Step
amp         10      0.1     2000     None     True     None     None
cen        5.5     -inf      inf     None     True     None     None
fwhm     2.944     -inf      inf     None    False 2.3548*wid     None
wid       1.25        0      inf     None     True     None     None

With that definition, the value (and uncertainty) of the fwhm parameter will be reported in the output of any fit done with that model.

Data Types for data and independent data with Model

The model as defined by your model function will use the independent variable(s) you specify to best match the data you provide. The model is meant to be an abstract representation for data, but when you do a fit with Model.fit(), you really need to pass in values for the data to be modeled and the independent data used to calculate that data.

As discussed in Types of Data to Use for Fitting, the mathematical solvers used by lmfit all work exclusively with 1-dimensional numpy arrays of datatype (dtype) “float64”. The value of the calculation (model-data)*weights using the calculation of your model function, and the data and weights you pass in will always be coerced to an 1-dimensional ndarray with dtype “float64” when it is passed to the solver. If it cannot be coerced, an error will occur and the fit will be aborted.

That coercion will usually work for “array like” data that is not already a float64 ndarray. But, depending on the model function, the calculations within the model function may not always work well for some “array like” data types - especially independent data that are in list of numbers and ndarrays of type “float32” or “int16” or less precision.

To be clear, independent data for models using Model are meant to be truly independent, and not not required to be strictly numerical or objects that are easily converted to arrays of numbers. The could, for example, be a dictionary, an instance of a user-defined class, or other type of structured data. You can use independent data any way you want in your model function. But, as with almost all the examples given here, independent data is often also a 1-dimensional array of values, say x, and a simple view of the fit would be to plot the data as y as a function of x. Again, this is not required, but it is very common, especially for novice users.

By default, all data and independent data passed to Model.fit() that is “array like” - a list or tuple of numbers, a pandas.Series, and h5py.Dataset, or any object that has an __array__() method – will be converted to a “float64” ndarray before the fit begins. If the array-like data is complex, it will be converted to a “complex128” ndarray, which will always work too. This conversion before the fit begins ensures that the model function sees only “float64 ndarrays”, and nearly guarantees that data type conversion will not cause problems for the fit. But it also means that if you have passed a pandas.Series as data or independent data, not all of the methods or attributes of that Series will be available by default within the model function.

New in version 1.2.2.

This coercion can be turned of with the coerce_farray option to Model.fit(). When set to False, neither the data nor the independent data will be coerced from their original data type, and the user will be responsible to arrange for the calculation and return value from the model function to be allow a proper and accurate conversion to a “float64” ndarray.

See also Types of Data to Use for Fitting for general advise and recommendations on types of data to use when fitting data.

Saving and Loading Models

It is sometimes desirable to save a Model for later use outside of the code used to define the model. Lmfit provides a save_model() function that will save a Model to a file. There is also a companion load_model() function that can read this file and reconstruct a Model from it.

Saving a model turns out to be somewhat challenging. The main issue is that Python is not normally able to serialize a function (such as the model function making up the heart of the Model) in a way that can be reconstructed into a callable Python object. The dill package can sometimes serialize functions, but with the limitation that it can be used only in the same version of Python. In addition, class methods used as model functions will not retain the rest of the class attributes and methods, and so may not be usable. With all those warnings, it should be emphasized that if you are willing to save or reuse the definition of the model function as Python code, then saving the Parameters and rest of the components that make up a model presents no problem.

If the dill package is installed, the model function will also be saved using it. But because saving the model function is not always reliable, saving a model will always save the name of the model function. The load_model() takes an optional funcdefs argument that can contain a dictionary of function definitions with the function names as keys and function objects as values. If one of the dictionary keys matches the saved name, the corresponding function object will be used as the model function. If it is not found by name, and if dill was used to save the model, and if dill is available at run-time, the dill-encoded function will try to be used. Note that this approach will generally allow you to save a model that can be used by another installation of the same version of Python, but may not work across Python versions. For preserving fits for extended periods of time (say, archiving for documentation of scientific results), we strongly encourage you to save the full Python code used for the model function and fit process.

save_model(model, fname)

Save a Model to a file.

Parameters:
  • model (Model) – Model to be saved.

  • fname (str) – Name of file for saved Model.

load_model(fname, funcdefs=None)

Load a saved Model from a file.

Parameters:
  • fname (str) – Name of file containing saved Model.

  • funcdefs (dict, optional) – Dictionary of custom function names and definitions.

Returns:

Model object loaded from file.

Return type:

Model

As a simple example, one can save a model as:

# <examples/doc_model_savemodel.py>
import numpy as np

from lmfit.model import Model, save_model


def mysine(x, amp, freq, shift):
    return amp * np.sin(x*freq + shift)


sinemodel = Model(mysine)
pars = sinemodel.make_params(amp=1, freq=0.25, shift=0)

save_model(sinemodel, 'sinemodel.sav')
# <end examples/doc_model_savemodel.py>

To load that later, one might do:

# <examples/doc_model_loadmodel.py>
import os
import sys

import matplotlib.pyplot as plt
import numpy as np

from lmfit.model import load_model

if not os.path.exists('sinemodel.sav'):
    os.system(f"{sys.executable} doc_model_savemodel.py")


def mysine(x, amp, freq, shift):
    return amp * np.sin(x*freq + shift)


data = np.loadtxt('sinedata.dat')
x = data[:, 0]
y = data[:, 1]

model = load_model('sinemodel.sav', funcdefs={'mysine': mysine})
params = model.make_params(amp=dict(value=3, min=0),
                           freq=0.52,
                           shift=dict(value=0, min=-1, max=1))

result = model.fit(y, params, x=x)
print(result.fit_report())

plt.plot(x, y, 'o')
plt.plot(x, result.best_fit, '-')
plt.show()
# <end examples/doc_model_loadmodel.py>

See also Saving and Loading ModelResults.

The ModelResult class

A ModelResult (which had been called ModelFit prior to version 0.9) is the object returned by Model.fit(). It is a subclass of Minimizer, and so contains many of the fit results. Of course, it knows the Model and the set of Parameters used in the fit, and it has methods to evaluate the model, to fit the data (or re-fit the data with changes to the parameters, or fit with different or modified data) and to print out a report for that fit.

While a Model encapsulates your model function, it is fairly abstract and does not contain the parameters or data used in a particular fit. A ModelResult does contain parameters and data as well as methods to alter and re-do fits. Thus the Model is the idealized model while the ModelResult is the messier, more complex (but perhaps more useful) object that represents a fit with a set of parameters to data with a model.

A ModelResult has several attributes holding values for fit results, and several methods for working with fits. These include statistics inherited from Minimizer useful for comparing different models, including chisqr, redchi, aic, and bic.

class ModelResult(model, params, data=None, weights=None, method='leastsq', fcn_args=None, fcn_kws=None, iter_cb=None, scale_covar=True, nan_policy='raise', calc_covar=True, max_nfev=None, **fit_kws)

Result from the Model fit.

This has many attributes and methods for viewing and working with the results of a fit using Model. It inherits from Minimizer, so that it can be used to modify and re-run the fit for the Model.

Parameters:
  • model (Model) – Model to use.

  • params (Parameters) – Parameters with initial values for model.

  • data (array_like, optional) – Data to be modeled.

  • weights (array_like, optional) – Weights to multiply (data-model) for fit residual.

  • method (str, optional) – Name of minimization method to use (default is ‘leastsq’).

  • fcn_args (sequence, optional) – Positional arguments to send to model function.

  • fcn_dict (dict, optional) – Keyword arguments to send to model function.

  • iter_cb (callable, optional) – Function to call on each iteration of fit.

  • scale_covar (bool, optional) – Whether to scale covariance matrix for uncertainty evaluation.

  • nan_policy ({'raise', 'propagate', 'omit'}, optional) – What to do when encountering NaNs when fitting Model.

  • calc_covar (bool, optional) – Whether to calculate the covariance matrix (default is True) for solvers other than ‘leastsq’ and ‘least_squares’. Requires the numdifftools package to be installed.

  • max_nfev (int or None, optional) – Maximum number of function evaluations (default is None). The default value depends on the fitting method.

  • **fit_kws (optional) – Keyword arguments to send to minimization routine.

ModelResult methods

ModelResult.eval(params=None, **kwargs)

Evaluate model function.

Parameters:
  • params (Parameters, optional) – Parameters to use.

  • **kwargs (optional) – Options to send to Model.eval().

Returns:

Array or value for the evaluated model.

Return type:

numpy.ndarray, float, int, or complex

ModelResult.eval_components(params=None, **kwargs)

Evaluate each component of a composite model function.

Parameters:
  • params (Parameters, optional) – Parameters, defaults to ModelResult.params.

  • **kwargs (optional) – Keyword arguments to pass to model function.

Returns:

Keys are prefixes of component models, and values are the estimated model value for each component of the model.

Return type:

dict

ModelResult.fit(data=None, params=None, weights=None, method=None, nan_policy=None, **kwargs)

Re-perform fit for a Model, given data and params.

Parameters:
  • data (array_like, optional) – Data to be modeled.

  • params (Parameters, optional) – Parameters with initial values for model.

  • weights (array_like, optional) – Weights to multiply (data-model) for fit residual.

  • method (str, optional) – Name of minimization method to use (default is ‘leastsq’).

  • nan_policy ({'raise', 'propagate', 'omit'}, optional) – What to do when encountering NaNs when fitting Model.

  • **kwargs (optional) – Keyword arguments to send to minimization routine.

ModelResult.fit_report(modelpars=None, show_correl=True, min_correl=0.1, sort_pars=False, correl_mode='list')

Return a printable fit report.

The report contains fit statistics and best-fit values with uncertainties and correlations.

Parameters:
  • modelpars (Parameters, optional) – Known Model Parameters.

  • show_correl (bool, optional) – Whether to show list of sorted correlations (default is True).

  • min_correl (float, optional) – Smallest correlation in absolute value to show (default is 0.1).

  • sort_pars (callable, optional) – Whether to show parameter names sorted in alphanumerical order (default is False). If False, then the parameters will be listed in the order as they were added to the Parameters dictionary. If callable, then this (one argument) function is used to extract a comparison key from each list element.

  • correl_mode ({'list', table'} str, optional) – Mode for how to show correlations. Can be either ‘list’ (default) to show a sorted (if sort_pars is True) list of correlation values, or ‘table’ to show a complete, formatted table of correlations.

Returns:

Multi-line text of fit report.

Return type:

str

ModelResult.summary()

Return a dictionary with statistics and attributes of a ModelResult.

Returns:

Dictionary of statistics and many attributes from a ModelResult.

Return type:

dict

Notes

  1. values for data arrays are not included.

  2. The result summary dictionary will include the following entries:

model, method, ndata, nvarys, nfree, chisqr, redchi, aic, bic, rsquared, nfev, max_nfev, aborted, errorbars, success, message, lmdif_message, ier, nan_policy, scale_covar, calc_covar, ci_out, col_deriv, flatchain, call_kws, var_names, user_options, kws, init_values, best_values, and params.

where ‘params’ is a list of parameter “states”: tuples with entries of (name, value, vary, expr, min, max, brute_step, stderr, correl, init_value, user_data).

3. The result will include only plain Python objects, and so should be easily serializable with JSON or similar tools.

ModelResult.conf_interval(**kwargs)

Calculate the confidence intervals for the variable parameters.

Confidence intervals are calculated using the confidence.conf_interval() function and keyword arguments (**kwargs) are passed to that function. The result is stored in the ci_out attribute so that it can be accessed without recalculating them.

ModelResult.ci_report(with_offset=True, ndigits=5, **kwargs)

Return a formatted text report of the confidence intervals.

Parameters:
  • with_offset (bool, optional) – Whether to subtract best value from all other values (default is True).

  • ndigits (int, optional) – Number of significant digits to show (default is 5).

  • **kwargs (optional) – Keyword arguments that are passed to the conf_interval function.

Returns:

Text of formatted report on confidence intervals.

Return type:

str

ModelResult.eval_uncertainty(params=None, sigma=1, dscale=0.01, **kwargs)

Evaluate the uncertainty of the model function.

This can be used to give confidence bands for the model from the uncertainties in the best-fit parameters.

Parameters:
  • params (Parameters, optional) – Parameters, defaults to ModelResult.params.

  • sigma (float, optional) – Confidence level, i.e. how many sigma (default is 1).

  • dscale (float, optional) – Scale for derivative steps (default is 0.01).

  • **kwargs (optional) – Values of options, independent variables, etcetera.

Returns:

Uncertainty at each value of the model.

Return type:

numpy.ndarray

Notes

  1. This is based on the excellent and clear example from https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html#confidence-and-prediction-intervals, which references the original work of: J. Wolberg, Data Analysis Using the Method of Least Squares, 2006, Springer

  2. The value of sigma is number of sigma values, and is converted to a probability. Values of 1, 2, or 3 give probabilities of 0.6827, 0.9545, and 0.9973, respectively. If the sigma value is < 1, it is interpreted as the probability itself. That is, sigma=1 and sigma=0.6827 will give the same results, within precision errors.

  3. The derivatives are calculated by stepping each Parameter from its best value to to +/- stderr*dscale, where dscale can be passed in and defaults to 0.01.

  4. Sets attributes of dely for the uncertainty of the model (which will be the same as the array returned by this method) and dely_comps, a dictionary of dely for each component.

  5. Sets the attribute of dely_predicted for the ‘predicted interval’, the sigma-scaled quadrature sum of the uncertainty interval dely and reduced chi-square. This should give an idea of the expected range in the data.

Examples

>>> out = model.fit(data, params, x=x)
>>> dely = out.eval_uncertainty(x=x)
>>> plt.plot(x, data)
>>> plt.plot(x, out.best_fit)
>>> plt.fill_between(x, out.best_fit-dely,
...                  out.best_fit+dely, color='#888888')
ModelResult.plot(datafmt='o', fitfmt='-', initfmt='--', xlabel=None, ylabel=None, yerr=None, numpoints=None, fig=None, data_kws=None, fit_kws=None, init_kws=None, ax_res_kws=None, ax_fit_kws=None, fig_kws=None, show_init=False, parse_complex='abs', title=None)

Plot the fit results and residuals using matplotlib.

The method will produce a matplotlib figure (if package available) with both results of the fit and the residuals plotted. If the fit model included weights, errorbars will also be plotted. To show the initial conditions for the fit, pass the argument show_init=True.

Parameters:
  • datafmt (str, optional) – Matplotlib format string for data points.

  • fitfmt (str, optional) – Matplotlib format string for fitted curve.

  • initfmt (str, optional) – Matplotlib format string for initial conditions for the fit.

  • xlabel (str, optional) – Matplotlib format string for labeling the x-axis.

  • ylabel (str, optional) – Matplotlib format string for labeling the y-axis.

  • yerr (numpy.ndarray, optional) – Array of uncertainties for data array.

  • numpoints (int, optional) – If provided, the final and initial fit curves are evaluated not only at data points, but refined to contain numpoints points in total.

  • fig (matplotlib.figure.Figure, optional) – The figure to plot on. The default is None, which means use the current pyplot figure or create one if there is none.

  • data_kws (dict, optional) – Keyword arguments passed to the plot function for data points.

  • fit_kws (dict, optional) – Keyword arguments passed to the plot function for fitted curve.

  • init_kws (dict, optional) – Keyword arguments passed to the plot function for the initial conditions of the fit.

  • ax_res_kws (dict, optional) – Keyword arguments for the axes for the residuals plot.

  • ax_fit_kws (dict, optional) – Keyword arguments for the axes for the fit plot.

  • fig_kws (dict, optional) – Keyword arguments for a new figure, if a new one is created.

  • show_init (bool, optional) – Whether to show the initial conditions for the fit (default is False).

  • parse_complex ({'abs', 'real', 'imag', 'angle'}, optional) – How to reduce complex data for plotting. Options are one of: ‘abs’ (default), ‘real’, ‘imag’, or ‘angle’, which correspond to the NumPy functions with the same name.

  • title (str, optional) – Matplotlib format string for figure title.

Return type:

matplotlib.figure.Figure

See also

ModelResult.plot_fit

Plot the fit results using matplotlib.

ModelResult.plot_residuals

Plot the fit residuals using matplotlib.

Notes

The method combines ModelResult.plot_fit and ModelResult.plot_residuals.

If yerr is specified or if the fit model included weights, then matplotlib.axes.Axes.errorbar is used to plot the data. If yerr is not specified and the fit includes weights, yerr set to 1/self.weights.

If model returns complex data, yerr is treated the same way that weights are in this case.

If fig is None then matplotlib.pyplot.figure(**fig_kws) is called, otherwise fig_kws is ignored.

ModelResult.plot_fit(ax=None, datafmt='o', fitfmt='-', initfmt='--', xlabel=None, ylabel=None, yerr=None, numpoints=None, data_kws=None, fit_kws=None, init_kws=None, ax_kws=None, show_init=False, parse_complex='abs', title=None)

Plot the fit results using matplotlib, if available.

The plot will include the data points, the initial fit curve (optional, with show_init=True), and the best-fit curve. If the fit model included weights or if yerr is specified, errorbars will also be plotted.

Parameters:
  • ax (matplotlib.axes.Axes, optional) – The axes to plot on. The default in None, which means use the current pyplot axis or create one if there is none.

  • datafmt (str, optional) – Matplotlib format string for data points.

  • fitfmt (str, optional) – Matplotlib format string for fitted curve.

  • initfmt (str, optional) – Matplotlib format string for initial conditions for the fit.

  • xlabel (str, optional) – Matplotlib format string for labeling the x-axis.

  • ylabel (str, optional) – Matplotlib format string for labeling the y-axis.

  • yerr (numpy.ndarray, optional) – Array of uncertainties for data array.

  • numpoints (int, optional) – If provided, the final and initial fit curves are evaluated not only at data points, but refined to contain numpoints points in total.

  • data_kws (dict, optional) – Keyword arguments passed to the plot function for data points.

  • fit_kws (dict, optional) – Keyword arguments passed to the plot function for fitted curve.

  • init_kws (dict, optional) – Keyword arguments passed to the plot function for the initial conditions of the fit.

  • ax_kws (dict, optional) – Keyword arguments for a new axis, if a new one is created.

  • show_init (bool, optional) – Whether to show the initial conditions for the fit (default is False).

  • parse_complex ({'abs', 'real', 'imag', 'angle'}, optional) – How to reduce complex data for plotting. Options are one of: ‘abs’ (default), ‘real’, ‘imag’, or ‘angle’, which correspond to the NumPy functions with the same name.

  • title (str, optional) – Matplotlib format string for figure title.

Return type:

matplotlib.axes.Axes

See also

ModelResult.plot_residuals

Plot the fit residuals using matplotlib.

ModelResult.plot

Plot the fit results and residuals using matplotlib.

Notes

For details about plot format strings and keyword arguments see documentation of matplotlib.axes.Axes.plot.

If yerr is specified or if the fit model included weights, then matplotlib.axes.Axes.errorbar is used to plot the data. If yerr is not specified and the fit includes weights, yerr set to 1/self.weights.

If model returns complex data, yerr is treated the same way that weights are in this case.

If ax is None then matplotlib.pyplot.gca(**ax_kws) is called.

ModelResult.plot_residuals(ax=None, datafmt='o', yerr=None, data_kws=None, fit_kws=None, ax_kws=None, parse_complex='abs', title=None)

Plot the fit residuals using matplotlib, if available.

If yerr is supplied or if the model included weights, errorbars will also be plotted.

Parameters:
  • ax (matplotlib.axes.Axes, optional) – The axes to plot on. The default in None, which means use the current pyplot axis or create one if there is none.

  • datafmt (str, optional) – Matplotlib format string for data points.

  • yerr (numpy.ndarray, optional) – Array of uncertainties for data array.

  • data_kws (dict, optional) – Keyword arguments passed to the plot function for data points.

  • fit_kws (dict, optional) – Keyword arguments passed to the plot function for fitted curve.

  • ax_kws (dict, optional) – Keyword arguments for a new axis, if a new one is created.

  • parse_complex ({'abs', 'real', 'imag', 'angle'}, optional) – How to reduce complex data for plotting. Options are one of: ‘abs’ (default), ‘real’, ‘imag’, or ‘angle’, which correspond to the NumPy functions with the same name.

  • title (str, optional) – Matplotlib format string for figure title.

Return type:

matplotlib.axes.Axes

See also

ModelResult.plot_fit

Plot the fit results using matplotlib.

ModelResult.plot

Plot the fit results and residuals using matplotlib.

Notes

For details about plot format strings and keyword arguments see documentation of matplotlib.axes.Axes.plot.

If yerr is specified or if the fit model included weights, then matplotlib.axes.Axes.errorbar is used to plot the data. If yerr is not specified and the fit includes weights, yerr set to 1/self.weights.

If model returns complex data, yerr is treated the same way that weights are in this case.

If ax is None then matplotlib.pyplot.gca(**ax_kws) is called.

ModelResult.iter_cb()

Optional callable function, to be called at each fit iteration. This must take take arguments of (params, iter, resid, *args, **kws), where params will have the current parameter values, iter the iteration, resid the current residual array, and *args and **kws as passed to the objective function. See Using a Iteration Callback Function.

ModelResult.jacfcn()

Optional callable function, to be called to calculate Jacobian array.

ModelResult attributes

A ModelResult will take all of the attributes of MinimizerResult, and several more. Here, we arrange them into categories.

Parameters and Variables

best_values

Dictionary with parameter names as keys, and best-fit values as values.

init_params

Initial parameters, as passed to Model.fit().

init_values

Dictionary with parameter names as keys, and initial values as values.

init_vals

list of values for the variable parameters.

params

Parameters used in fit; will contain the best-fit values and uncertainties if available.

uvars

Dictionary of uncertainties ufloats from Parameters.

var_names

List of variable Parameter names used in optimization in the same order as the values in init_vals and covar.

Fit Arrays and Model

best_fit

numpy.ndarray result of model function, evaluated at provided independent variables and with best-fit parameters.

covar

numpy.ndarray (square) covariance matrix returned from fit.

data

numpy.ndarray of data to compare to model.

dely

numpy.ndarray of estimated uncertainties or confidence interval in the y values of the model from ModelResult.eval_uncertainty() (see Calculating uncertainties in the model function).

dely_comps

a dictionary of estimated uncertainties in the y values of the model components, from ModelResult.eval_uncertainty() (see Calculating uncertainties in the model function).

dely_predicted

numpy.ndarray of estimated expected uncertainties in the data or predicted interval in the y values of the model from ModelResult.eval_uncertainty() (see Calculating uncertainties in the model function).

init_fit

numpy.ndarray result of model function, evaluated at provided independent variables and with initial parameters.

residual

numpy.ndarray for residual.

weights

numpy.ndarray (or None) of weighting values to be used in fit. If not None, it will be used as a multiplicative factor of the residual array, so that weights*(data - fit) is minimized in the least-squares sense.

components

List of components of the Model.

Fit Status

aborted

Whether the fit was aborted.

errorbars

Boolean for whether error bars were estimated by fit.

flatchain

A pandas.DataFrame view of the sampling chain if the emcee method is uses.

ier

Integer returned code from scipy.optimize.leastsq.

lmdif_message

String message returned from scipy.optimize.leastsq.

message

String message returned from minimize().

method

String naming fitting method for minimize().

call_kws

Dict of keyword arguments actually send to underlying solver with minimize().

model

Instance of Model used for model.

scale_covar

Boolean flag for whether to automatically scale covariance matrix.

userargs

positional arguments passed to Model.fit(), a tuple of (y, weights)

userkws

keyword arguments passed to Model.fit(), a dict, which will have independent data arrays such as x.

Fit Statistics

aic

Floating point best-fit Akaike Information Criterion statistic (see MinimizerResult – the optimization result).

bic

Floating point best-fit Bayesian Information Criterion statistic (see MinimizerResult – the optimization result).

chisqr

Floating point best-fit chi-square statistic (see MinimizerResult – the optimization result).

ci_out

Confidence interval data (see Calculation of confidence intervals) or None if the confidence intervals have not been calculated.

ndata

Integer number of data points.

nfev

Integer number of function evaluations used for fit.

nfree

Integer number of free parameters in fit.

nvarys

Integer number of independent, freely varying variables in fit.

redchi

Floating point reduced chi-square statistic (see MinimizerResult – the optimization result).

rsquared

Floating point \(R^2\) statistic, defined for data \(y\) and best-fit model \(f\) as

\begin{eqnarray*} R^2 &=& 1 - \frac{\sum_i (y_i - f_i)^2}{\sum_i (y_i - \bar{y})^2} \end{eqnarray*}
success

Boolean value of whether fit succeeded. This is an optimistic view of success, meaning that the method finished without error.

Calculating uncertainties in the model function

We return to the first example above and ask not only for the uncertainties in the fitted parameters but for the range of values that those uncertainties mean for the model function itself. We can use the ModelResult.eval_uncertainty() method of the model result object to evaluate the uncertainty in the model with a specified level for \(\sigma\).

That is, adding:

dely = result.eval_uncertainty(sigma=3)
plt.fill_between(x, result.best_fit-dely, result.best_fit+dely, color="#ABABAB",
                 label=r'3-$\sigma$ uncertainty band')

to the example fit to the Gaussian at the beginning of this chapter will give 3-\(\sigma\) bands for the best-fit Gaussian, and produce the figure below.

_images/model_31_0.svg

New in version 1.0.4.

If the model is a composite built from multiple components, the ModelResult.eval_uncertainty() method will evaluate the uncertainty of both the full model (often the sum of multiple components) as well as the uncertainty in each component. The uncertainty of the full model will be held in result.dely, and the uncertainties for each component will be held in the dictionary result.dely_comps, with keys that are the component prefixes.

An example script shows how the uncertainties in components of a composite model can be calculated and used:

# <examples/doc_model_uncertainty2.py>
import matplotlib.pyplot as plt
import numpy as np

from lmfit.models import ExponentialModel, GaussianModel

dat = np.loadtxt('NIST_Gauss2.dat')
x = dat[:, 1]
y = dat[:, 0]

model = (GaussianModel(prefix='g1_') +
         GaussianModel(prefix='g2_') +
         ExponentialModel(prefix='bkg_'))

params = model.make_params(bkg_amplitude=100, bkg_decay=80,
                           g1_amplitude=3000,
                           g1_center=100,
                           g1_sigma=10,
                           g2_amplitude=3000,
                           g2_center=150,
                           g2_sigma=10)

result = model.fit(y, params, x=x)
print(result.fit_report(min_correl=0.5))

comps = result.eval_components(x=x)
dely = result.eval_uncertainty(sigma=3)

fig, axes = plt.subplots(2, 2, figsize=(12.8, 9.6))

axes[0][0].plot(x, y, 'o', color='#99002299', markersize=3, label='data')
axes[0][0].plot(x, result.best_fit, '-', label='best fit')
axes[0][0].plot(x, result.init_fit, '--', label='initial fit')
axes[0][0].set_title('data, initial fit, and best-fit')
axes[0][0].legend()

axes[0][1].plot(x, y, 'o', color='#99002299', markersize=3, label='data')
axes[0][1].plot(x, result.best_fit, '-', label='best fit')
axes[0][1].fill_between(x, result.best_fit-dely, result.best_fit+dely,
                        color="#8A8A8A", label=r'3-$\sigma$ band')
axes[0][1].set_title('data, best-fit, and uncertainty band')
axes[0][1].legend()

axes[1][0].plot(x, result.best_fit, '-', label=r'best fit, 3-$\sigma$ band')
axes[1][0].fill_between(x,
                        result.best_fit-result.dely,
                        result.best_fit+result.dely,
                        color="#8A8A8A")

axes[1][0].plot(x, comps['bkg_'], label=r'background, 3-$\sigma$ band')
axes[1][0].fill_between(x,
                        comps['bkg_']-result.dely_comps['bkg_'],
                        comps['bkg_']+result.dely_comps['bkg_'],
                        color="#8A8A8A")

axes[1][0].plot(x, comps['g1_'], label=r'Gaussian #1, 3-$\sigma$ band')
axes[1][0].fill_between(x,
                        comps['g1_']-result.dely_comps['g1_'],
                        comps['g1_']+result.dely_comps['g1_'],
                        color="#8A8A8A")

axes[1][0].plot(x, comps['g2_'], label=r'Gaussian #2, 3-$\sigma$ band')
axes[1][0].fill_between(x,
                        comps['g2_']-result.dely_comps['g2_'],
                        comps['g2_']+result.dely_comps['g2_'],
                        color="#8A8A8A")
axes[1][0].set_title('model components with uncertainty bands')
axes[1][0].legend()

axes[1][1].plot(x, result.best_fit, '-', label='best fit')
axes[1][1].plot(x, 10*result.dely, label=r'3-$\sigma$ total (x10)')
axes[1][1].plot(x, 10*result.dely_comps['bkg_'], label=r'3-$\sigma$ background (x10)')
axes[1][1].plot(x, 10*result.dely_comps['g1_'], label=r'3-$\sigma$ Gaussian #1 (x10)')
axes[1][1].plot(x, 10*result.dely_comps['g2_'], label=r'3-$\sigma$ Gaussian #2 (x10)')
axes[1][1].set_title('uncertainties for model components')
axes[1][1].legend()

plt.show()
# <end examples/doc_model_uncertainty2.py>
[[Model]]
    ((Model(gaussian, prefix='g1_') + Model(gaussian, prefix='g2_')) + Model(exponential, prefix='bkg_'))
[[Fit Statistics]]
    # fitting method   = leastsq
    # function evals   = 55
    # data points      = 250
    # variables        = 8
    chi-square         = 1247.52821
    reduced chi-square = 5.15507524
    Akaike info crit   = 417.864631
    Bayesian info crit = 446.036318
    R-squared          = 0.99648654
[[Variables]]
    g1_amplitude:   4257.77399 +/- 42.3838008 (1.00%) (init = 3000)
    g1_center:      107.030957 +/- 0.15006868 (0.14%) (init = 100)
    g1_sigma:       16.6725789 +/- 0.16048222 (0.96%) (init = 10)
    g2_amplitude:   2493.41715 +/- 36.1696228 (1.45%) (init = 3000)
    g2_center:      153.270104 +/- 0.19466723 (0.13%) (init = 150)
    g2_sigma:       13.8069453 +/- 0.18680099 (1.35%) (init = 10)
    bkg_amplitude:  99.0183280 +/- 0.53748639 (0.54%) (init = 100)
    bkg_decay:      90.9508824 +/- 1.10310769 (1.21%) (init = 80)
    g1_fwhm:        39.2609222 +/- 0.37790675 (0.96%) == '2.3548200*g1_sigma'
    g1_height:      101.880228 +/- 0.59217122 (0.58%) == '0.3989423*g1_amplitude/max(1e-15, g1_sigma)'
    g2_fwhm:        32.5128710 +/- 0.43988270 (1.35%) == '2.3548200*g2_sigma'
    g2_height:      72.0455936 +/- 0.61721901 (0.86%) == '0.3989423*g2_amplitude/max(1e-15, g2_sigma)'
[[Correlations]] (unreported correlations are < 0.500)
    C(g1_amplitude, g1_sigma)   = +0.8243
    C(g2_amplitude, g2_sigma)   = +0.8154
    C(bkg_amplitude, bkg_decay) = -0.6946
    C(g1_sigma, g2_center)      = +0.6842
    C(g1_center, g2_amplitude)  = -0.6689
    C(g1_center, g2_sigma)      = -0.6520
    C(g1_amplitude, g2_center)  = +0.6477
    C(g1_center, g2_center)     = +0.6205
    C(g1_center, g1_sigma)      = +0.5075
    C(g1_amplitude, bkg_decay)  = -0.5074
_images/model_32_1.svg

New in version 1.2.3.

In addition to the “confidence interval” result.dely, the ModelResult.eval_uncertainty() method will also estimate the “predicted interval” – the expected range for data matching the model, and hold this in result.dely_predicted. An example script showing both confidence and predicted intervals is shown below:

# <examples/doc_model_uncertainty_pred.py>

# Here we reproduce the results presented in Section 5.1 of the
# nonlinear regression lecture by Julien Chiquet
# https://jchiquet.github.io/MAP566/docs/regression/map566-lecture-nonlinear-regression.html

import matplotlib.pyplot as plt
import numpy as np

from lmfit import Model

# data from the R base package datasets for the waiting time between eruptions
# and the duration of the eruption for the Old Faithful geyser in Yellowstone
# National Park, Wyoming, USA.

tlen = np.array([3.6, 1.8, 3.333, 2.283, 4.533, 2.883, 4.7, 3.6, 1.95, 4.35,
                 1.833, 3.917, 4.2, 1.75, 4.7, 2.167, 1.75, 4.8, 1.6, 4.25,
                 1.8, 1.75, 3.45, 3.067, 4.533, 3.6, 1.967, 4.083, 3.85, 4.433,
                 4.3, 4.467, 3.367, 4.033, 3.833, 2.017, 1.867, 4.833, 1.833,
                 4.783, 4.35, 1.883, 4.567, 1.75, 4.533, 3.317, 3.833, 2.1,
                 4.633, 2, 4.8, 4.716, 1.833, 4.833, 1.733, 4.883, 3.717,
                 1.667, 4.567, 4.317, 2.233, 4.5, 1.75, 4.8, 1.817, 4.4, 4.167,
                 4.7, 2.067, 4.7, 4.033, 1.967, 4.5, 4, 1.983, 5.067, 2.017,
                 4.567, 3.883, 3.6, 4.133, 4.333, 4.1, 2.633, 4.067, 4.933,
                 3.95, 4.517, 2.167, 4, 2.2, 4.333, 1.867, 4.817, 1.833, 4.3,
                 4.667, 3.75, 1.867, 4.9, 2.483, 4.367, 2.1, 4.5, 4.05, 1.867,
                 4.7, 1.783, 4.85, 3.683, 4.733, 2.3, 4.9, 4.417, 1.7, 4.633,
                 2.317, 4.6, 1.817, 4.417, 2.617, 4.067, 4.25, 1.967, 4.6,
                 3.767, 1.917, 4.5, 2.267, 4.65, 1.867, 4.167, 2.8, 4.333,
                 1.833, 4.383, 1.883, 4.933, 2.033, 3.733, 4.233, 2.233, 4.533,
                 4.817, 4.333, 1.983, 4.633, 2.017, 5.1, 1.8, 5.033, 4, 2.4,
                 4.6, 3.567, 4, 4.5, 4.083, 1.8, 3.967, 2.2, 4.15, 2, 3.833,
                 3.5, 4.583, 2.367, 5, 1.933, 4.617, 1.917, 2.083, 4.583,
                 3.333, 4.167, 4.333, 4.5, 2.417, 4, 4.167, 1.883, 4.583, 4.25,
                 3.767, 2.033, 4.433, 4.083, 1.833, 4.417, 2.183, 4.8, 1.833,
                 4.8, 4.1, 3.966, 4.233, 3.5, 4.366, 2.25, 4.667, 2.1, 4.35,
                 4.133, 1.867, 4.6, 1.783, 4.367, 3.85, 1.933, 4.5, 2.383, 4.7,
                 1.867, 3.833, 3.417, 4.233, 2.4, 4.8, 2, 4.15, 1.867, 4.267,
                 1.75, 4.483, 4, 4.117, 4.083, 4.267, 3.917, 4.55, 4.083,
                 2.417, 4.183, 2.217, 4.45, 1.883, 1.85, 4.283, 3.95, 2.333,
                 4.15, 2.35, 4.933, 2.9, 4.583, 3.833, 2.083, 4.367, 2.133,
                 4.35, 2.2, 4.45, 3.567, 4.5, 4.15, 3.817, 3.917, 4.45, 2,
                 4.283, 4.767, 4.533, 1.85, 4.25, 1.983, 2.25, 4.75, 4.117,
                 2.15, 4.417, 1.817, 4.467])

delay = np.array([79, 54, 74, 62, 85, 55, 88, 85, 51, 85, 54, 84, 78, 47, 83,
                  52, 62, 84, 52, 79, 51, 47, 78, 69, 74, 83, 55, 76, 78, 79,
                  73, 77, 66, 80, 74, 52, 48, 80, 59, 90, 80, 58, 84, 58, 73,
                  83, 64, 53, 82, 59, 75, 90, 54, 80, 54, 83, 71, 64, 77, 81,
                  59, 84, 48, 82, 60, 92, 78, 78, 65, 73, 82, 56, 79, 71, 62,
                  76, 60, 78, 76, 83, 75, 82, 70, 65, 73, 88, 76, 80, 48, 86,
                  60, 90, 50, 78, 63, 72, 84, 75, 51, 82, 62, 88, 49, 83, 81,
                  47, 84, 52, 86, 81, 75, 59, 89, 79, 59, 81, 50, 85, 59, 87,
                  53, 69, 77, 56, 88, 81, 45, 82, 55, 90, 45, 83, 56, 89, 46,
                  82, 51, 86, 53, 79, 81, 60, 82, 77, 76, 59, 80, 49, 96, 53,
                  77, 77, 65, 81, 71, 70, 81, 93, 53, 89, 45, 86, 58, 78, 66,
                  76, 63, 88, 52, 93, 49, 57, 77, 68, 81, 81, 73, 50, 85, 74,
                  55, 77, 83, 83, 51, 78, 84, 46, 83, 55, 81, 57, 76, 84, 77,
                  81, 87, 77, 51, 78, 60, 82, 91, 53, 78, 46, 77, 84, 49, 83,
                  71, 80, 49, 75, 64, 76, 53, 94, 55, 76, 50, 82, 54, 75, 78,
                  79, 78, 78, 70, 79, 70, 54, 86, 50, 90, 54, 54, 77, 79, 64,
                  75, 47, 86, 63, 85, 82, 57, 82, 67, 74, 54, 83, 73, 73, 88,
                  80, 71, 83, 56, 79, 78, 84, 58, 83, 43, 60, 75, 81, 46, 90,
                  46, 74])


# model with a modified logistic function + offset
def logistic_func(t, amp, off, tau, gamma):
    return (amp-off)/(1+np.exp(-gamma*(t-tau))) + off


# set up model and initial parameter values
mod = Model(logistic_func)
pars = mod.make_params(amp=90, gamma=2, tau=2, off=50)

# run fit, and print report
result = mod.fit(delay, pars, t=tlen)
print(result.fit_report())

# make finely spaced grid of duration values, extending past data range
tfine = np.linspace(1, 6, 101)
yfine = result.eval(t=tfine)

# now calculate uncertainty interval and predicted interval for sigma=2, 95% level
efine = result.eval_uncertainty(t=tfine, sigma=2)
pfine = result.dely_predicted

plt.plot(tlen, delay, '.', label='observations')
plt.plot(tlen, result.best_fit, 'o', label='best fit')
plt.plot(tfine, yfine, '-', label='fine grid model')
plt.fill_between(tfine, yfine-efine, yfine+efine,
                 color="#c0c0c0", label=r'$2\sigma$ confidence interval')

plt.fill_between(tfine, yfine-pfine, yfine+pfine,
                 color="#d0d0a060", label=r'$2\sigma$ predicted interval')

plt.xlabel('duration (minutes)')
plt.ylabel('delay to next eruption (minutes)')
plt.legend()
plt.show()

# <end examples/doc_model_uncertainty_pred.py>
[[Model]]
    Model(logistic_func)
[[Fit Statistics]]
    # fitting method   = leastsq
    # function evals   = 60
    # data points      = 272
    # variables        = 4
    chi-square         = 8469.42359
    reduced chi-square = 31.6023268
    Akaike info crit   = 943.249061
    Bayesian info crit = 957.672270
    R-squared          = 0.83090615
[[Variables]]
    amp:    82.4660404 +/- 0.99770817 (1.21%) (init = 90)
    off:    51.3218514 +/- 1.83125060 (3.57%) (init = 50)
    tau:    3.05525924 +/- 0.11068420 (3.62%) (init = 2)
    gamma:  2.25386376 +/- 0.43544396 (19.32%) (init = 2)
[[Correlations]] (unreported correlations are < 0.100)
    C(off, gamma) = +0.8634
    C(amp, gamma) = -0.7706
    C(off, tau)   = +0.7277
    C(amp, off)   = -0.5381
    C(tau, gamma) = +0.4699
_images/model_33_1.svg

Using uncertainties in the fitted parameters for post-fit calculations

New in version 1.2.2.

As with the previous section, after a fit is complete, you may want to do some further calculations with the resulting Parameter values. Since these Parameters will have not only best-fit values but also usually have uncertainties, it is desirable for subsequent calculations to be able to propagate those uncertainties to any resulting calculated value. In addition, it is common for Parameters to have finite - and sometimes large - correlations which should be taken into account in such calculations.

The ModelResult.uvars will be a dictionary with keys for all variable Parameters and values that are uvalues from the uncertainties package. When used in mathematical calculations with basic Python operators or numpy functions, these uvalues will automatically propagate their uncertainties to the resulting calculation, and taking into account the full covariance matrix describing the correlation between values.

This readily allows “derived Parameters” to be evaluated just after the fit. In fact, it might be useful to have a Model always do such a calculation just after the fit. The Model.post_fit() method allows exactly that: you can overwrite this otherwise empty method for any Model. It takes one argument: the ModelResult instance just after the actual fit has run (and before Model.fit() returns) and can be used to add Parameters or do other post-fit processing.

The following example script shows two different methods for calculating a centroid value for two peaks, either by doing the calculation directly after the fit with the result.uvars or by capturing this in a Model.post_fit() method that would be run for all instances of that model. It also demonstrates that taking correlations between Parameters into account when performing calculations can have a noticeable influence on the resulting uncertainties.

# <examples/doc_uvars_params.py>
import numpy as np

from lmfit.models import ExponentialModel, GaussianModel

dat = np.loadtxt('NIST_Gauss2.dat')
x = dat[:, 1]
y = dat[:, 0]

bkg = ExponentialModel(prefix='exp_')
gauss1 = GaussianModel(prefix='g1_')
gauss2 = GaussianModel(prefix='g2_')

mod = gauss1 + gauss2 + bkg

pars = mod.make_params(g1_center=105, g1_amplitude=4000, g1_sigma={'value': 15, 'min': 0},
                       g2_center=155, g2_amplitude=2000, g2_sigma={'value': 15, 'min': 0},
                       exp_amplitude=100, exp_decay=100)

out = mod.fit(y, pars, x=x)

print(out.fit_report(min_correl=0.5))

# Area and Centroid of the combined peaks
# option 1: from output uncertainties values

uvar_g1amp = out.uvars['g1_amplitude']
uvar_g2amp = out.uvars['g2_amplitude']
uvar_g1cen = out.uvars['g1_center']
uvar_g2cen = out.uvars['g2_center']

print("### Peak Area: ")
print(f"Peak1: {out.params['g1_amplitude'].value:.5f}+/-{out.params['g1_amplitude'].stderr:.5f}")
print(f"Peak2: {out.params['g2_amplitude'].value:.5f}+/-{out.params['g2_amplitude'].stderr:.5f}")
print(f"Sum  : {(uvar_g1amp + uvar_g2amp):.5f}")


area_quadrature = np.sqrt(out.params['g1_amplitude'].stderr**2 + out.params['g2_amplitude'].stderr**2)

print(f"Correlation of peak1 and peak2 areas:            {out.params['g1_amplitude'].correl['g2_amplitude']:.5f}")
print(f"Stderr Quadrature sum for peak1 and peak2 area2: {area_quadrature:.5f}")
print(f"Stderr of peak1 + peak2 area, with correlation:  {(uvar_g1amp+uvar_g2amp).std_dev:.5f}")

print("### Peak Centroid: ")

centroid = (uvar_g1amp * uvar_g1cen + uvar_g2amp * uvar_g2cen) / (uvar_g1amp + uvar_g2amp)

print(f"Peak Centroid: {centroid:.5f}")

# option 2: define corresponding variables after fit


def post_fit(result):
    "example post fit function"
    result.params.add('post_area', expr='g1_amplitude + g2_amplitude')
    result.params.add('post_centroid', expr='(g1_amplitude*g1_center+ g2_amplitude*g2_center)/(g1_amplitude + g2_amplitude)')


mod.post_fit = post_fit

out = mod.fit(y, pars, x=x)
print(out.fit_report(min_correl=0.5))

# option 3: define corresponding variables before fit
pars.add('area', expr='g1_amplitude + g2_amplitude')
pars.add('centroid', expr='(g1_amplitude*g1_center+ g2_amplitude*g2_center)/(g1_amplitude + g2_amplitude)')

out = mod.fit(y, pars, x=x)
print(out.fit_report(min_correl=0.5))
# <end examples/doc_uvars_params.py>
[[Model]]
    ((Model(gaussian, prefix='g1_') + Model(gaussian, prefix='g2_')) + Model(exponential, prefix='exp_'))
[[Fit Statistics]]
    # fitting method   = leastsq
    # function evals   = 46
    # data points      = 250
    # variables        = 8
    chi-square         = 1247.52821
    reduced chi-square = 5.15507524
    Akaike info crit   = 417.864631
    Bayesian info crit = 446.036318
    R-squared          = 0.99648654
[[Variables]]
    g1_amplitude:   4257.77390 +/- 42.3837959 (1.00%) (init = 4000)
    g1_center:      107.030957 +/- 0.15006877 (0.14%) (init = 105)
    g1_sigma:       16.6725785 +/- 0.16048211 (0.96%) (init = 15)
    g2_amplitude:   2493.41716 +/- 36.1697062 (1.45%) (init = 2000)
    g2_center:      153.270104 +/- 0.19466774 (0.13%) (init = 155)
    g2_sigma:       13.8069453 +/- 0.18680153 (1.35%) (init = 15)
    exp_amplitude:  99.0183277 +/- 0.53748650 (0.54%) (init = 100)
    exp_decay:      90.9508838 +/- 1.10310767 (1.21%) (init = 100)
    g1_fwhm:        39.2609214 +/- 0.37790648 (0.96%) == '2.3548200*g1_sigma'
    g1_height:      101.880229 +/- 0.59217051 (0.58%) == '0.3989423*g1_amplitude/max(1e-15, g1_sigma)'
    g2_fwhm:        32.5128709 +/- 0.43988398 (1.35%) == '2.3548200*g2_sigma'
    g2_height:      72.0455939 +/- 0.61721985 (0.86%) == '0.3989423*g2_amplitude/max(1e-15, g2_sigma)'
[[Correlations]] (unreported correlations are < 0.500)
    C(g1_amplitude, g1_sigma)   = +0.8243
    C(g2_amplitude, g2_sigma)   = +0.8154
    C(exp_amplitude, exp_decay) = -0.6946
    C(g1_sigma, g2_center)      = +0.6842
    C(g1_center, g2_amplitude)  = -0.6689
    C(g1_center, g2_sigma)      = -0.6520
    C(g1_amplitude, g2_center)  = +0.6477
    C(g1_center, g2_center)     = +0.6205
    C(g1_center, g1_sigma)      = +0.5075
    C(g1_amplitude, exp_decay)  = -0.5074
### Peak Area: 
Peak1: 4257.77390+/-42.38380
Peak2: 2493.41716+/-36.16971
Sum  : 6751.19106+/-46.50802
Correlation of peak1 and peak2 areas:            -0.30712
Stderr Quadrature sum for peak1 and peak2 area2: 55.71924
Stderr of peak1 + peak2 area, with correlation:  46.50802
### Peak Centroid: 
Peak Centroid: 124.10846+/-0.14074
[[Model]]
    ((Model(gaussian, prefix='g1_') + Model(gaussian, prefix='g2_')) + Model(exponential, prefix='exp_'))
[[Fit Statistics]]
    # fitting method   = leastsq
    # function evals   = 46
    # data points      = 250
    # variables        = 8
    chi-square         = 1247.52821
    reduced chi-square = 5.15507524
    Akaike info crit   = 417.864631
    Bayesian info crit = 446.036318
    R-squared          = 0.99648654
[[Variables]]
    g1_amplitude:   4257.77390 +/- 42.3837959 (1.00%) (init = 4000)
    g1_center:      107.030957 +/- 0.15006877 (0.14%) (init = 105)
    g1_sigma:       16.6725785 +/- 0.16048211 (0.96%) (init = 15)
    g2_amplitude:   2493.41716 +/- 36.1697062 (1.45%) (init = 2000)
    g2_center:      153.270104 +/- 0.19466774 (0.13%) (init = 155)
    g2_sigma:       13.8069453 +/- 0.18680153 (1.35%) (init = 15)
    exp_amplitude:  99.0183277 +/- 0.53748650 (0.54%) (init = 100)
    exp_decay:      90.9508838 +/- 1.10310767 (1.21%) (init = 100)
    g1_fwhm:        39.2609214 +/- 0.37790648 (0.96%) == '2.3548200*g1_sigma'
    g1_height:      101.880229 +/- 0.59217051 (0.58%) == '0.3989423*g1_amplitude/max(1e-15, g1_sigma)'
    g2_fwhm:        32.5128709 +/- 0.43988398 (1.35%) == '2.3548200*g2_sigma'
    g2_height:      72.0455939 +/- 0.61721985 (0.86%) == '0.3989423*g2_amplitude/max(1e-15, g2_sigma)'
    post_area:      6751.19106 +/- 46.5080249 (0.69%) == 'g1_amplitude + g2_amplitude'
    post_centroid:  124.108459 +/- 0.14074482 (0.11%) == '(g1_amplitude*g1_center+ g2_amplitude*g2_center)/(g1_amplitude + g2_amplitude)'
[[Correlations]] (unreported correlations are < 0.500)
    C(g1_amplitude, g1_sigma)   = +0.8243
    C(g2_amplitude, g2_sigma)   = +0.8154
    C(exp_amplitude, exp_decay) = -0.6946
    C(g1_sigma, g2_center)      = +0.6842
    C(g1_center, g2_amplitude)  = -0.6689
    C(g1_center, g2_sigma)      = -0.6520
    C(g1_amplitude, g2_center)  = +0.6477
    C(g1_center, g2_center)     = +0.6205
    C(g1_center, g1_sigma)      = +0.5075
    C(g1_amplitude, exp_decay)  = -0.5074
[[Model]]
    ((Model(gaussian, prefix='g1_') + Model(gaussian, prefix='g2_')) + Model(exponential, prefix='exp_'))
[[Fit Statistics]]
    # fitting method   = leastsq
    # function evals   = 46
    # data points      = 250
    # variables        = 8
    chi-square         = 1247.52821
    reduced chi-square = 5.15507524
    Akaike info crit   = 417.864631
    Bayesian info crit = 446.036318
    R-squared          = 0.99648654
[[Variables]]
    g1_amplitude:   4257.77390 +/- 42.3837959 (1.00%) (init = 4000)
    g1_center:      107.030957 +/- 0.15006877 (0.14%) (init = 105)
    g1_sigma:       16.6725785 +/- 0.16048211 (0.96%) (init = 15)
    g2_amplitude:   2493.41716 +/- 36.1697062 (1.45%) (init = 2000)
    g2_center:      153.270104 +/- 0.19466774 (0.13%) (init = 155)
    g2_sigma:       13.8069453 +/- 0.18680153 (1.35%) (init = 15)
    exp_amplitude:  99.0183277 +/- 0.53748650 (0.54%) (init = 100)
    exp_decay:      90.9508838 +/- 1.10310767 (1.21%) (init = 100)
    g1_fwhm:        39.2609214 +/- 0.37790648 (0.96%) == '2.3548200*g1_sigma'
    g1_height:      101.880229 +/- 0.59217051 (0.58%) == '0.3989423*g1_amplitude/max(1e-15, g1_sigma)'
    g2_fwhm:        32.5128709 +/- 0.43988398 (1.35%) == '2.3548200*g2_sigma'
    g2_height:      72.0455939 +/- 0.61721985 (0.86%) == '0.3989423*g2_amplitude/max(1e-15, g2_sigma)'
    area:           6751.19106 +/- 46.5080249 (0.69%) == 'g1_amplitude + g2_amplitude'
    centroid:       124.108459 +/- 0.14074482 (0.11%) == '(g1_amplitude*g1_center+ g2_amplitude*g2_center)/(g1_amplitude + g2_amplitude)'
    post_area:      6751.19106 +/- 46.5080249 (0.69%) == 'g1_amplitude + g2_amplitude'
    post_centroid:  124.108459 +/- 0.14074482 (0.11%) == '(g1_amplitude*g1_center+ g2_amplitude*g2_center)/(g1_amplitude + g2_amplitude)'
[[Correlations]] (unreported correlations are < 0.500)
    C(g1_amplitude, g1_sigma)   = +0.8243
    C(g2_amplitude, g2_sigma)   = +0.8154
    C(exp_amplitude, exp_decay) = -0.6946
    C(g1_sigma, g2_center)      = +0.6842
    C(g1_center, g2_amplitude)  = -0.6689
    C(g1_center, g2_sigma)      = -0.6520
    C(g1_amplitude, g2_center)  = +0.6477
    C(g1_center, g2_center)     = +0.6205
    C(g1_center, g1_sigma)      = +0.5075
    C(g1_amplitude, exp_decay)  = -0.5074

Note that the Model.post_fit() does not need to be limited to this use case of adding derived Parameters.

Saving and Loading ModelResults

As with saving models (see section Saving and Loading Models), it is sometimes desirable to save a ModelResult, either for later use or to organize and compare different fit results. Lmfit provides a save_modelresult() function that will save a ModelResult to a file. There is also a companion load_modelresult() function that can read this file and reconstruct a ModelResult from it.

As discussed in section Saving and Loading Models, there are challenges to saving model functions that may make it difficult to restore a saved a ModelResult in a way that can be used to perform a fit. Use of the optional funcdefs argument is generally the most reliable way to ensure that a loaded ModelResult can be used to evaluate the model function or redo the fit.

save_modelresult(modelresult, fname)

Save a ModelResult to a file.

Parameters:
  • modelresult (ModelResult) – ModelResult to be saved.

  • fname (str) – Name of file for saved ModelResult.

load_modelresult(fname, funcdefs=None)

Load a saved ModelResult from a file.

Parameters:
  • fname (str) – Name of file containing saved ModelResult.

  • funcdefs (dict, optional) – Dictionary of custom function names and definitions.

Returns:

ModelResult object loaded from file.

Return type:

ModelResult

An example of saving a ModelResult is:

# <examples/doc_model_savemodelresult.py>
import numpy as np

from lmfit.model import save_modelresult
from lmfit.models import GaussianModel

data = np.loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]

gmodel = GaussianModel()
result = gmodel.fit(y, x=x, amplitude=5, center=5, sigma=1)

save_modelresult(result, 'gauss_modelresult.sav')

print(result.fit_report())
# <end examples/doc_model_savemodelresult.py>

To load that later, one might do:

# <examples/doc_model_loadmodelresult.py>
import os
import sys

import matplotlib.pyplot as plt
import numpy as np

from lmfit.model import load_modelresult

if not os.path.exists('gauss_modelresult.sav'):
    os.system(f"{sys.executable} doc_model_savemodelresult.py")

data = np.loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]

result = load_modelresult('gauss_modelresult.sav')
print(result.fit_report())

plt.plot(x, y, 'o')
plt.plot(x, result.best_fit, '-')
plt.show()
# <end examples/doc_model_loadmodelresult.py>

Composite Models : adding (or multiplying) Models

One of the more interesting features of the Model class is that Models can be added together or combined with basic algebraic operations (add, subtract, multiply, and divide) to give a composite model. The composite model will have parameters from each of the component models, with all parameters being available to influence the whole model. This ability to combine models will become even more useful in the next chapter, when pre-built subclasses of Model are discussed. For now, we’ll consider a simple example, and build a model of a Gaussian plus a line, as to model a peak with a background. For such a simple problem, we could just build a model that included both components:

def gaussian_plus_line(x, amp, cen, wid, slope, intercept):
    """line + 1-d gaussian"""

    gauss = (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2))
    line = slope*x + intercept
    return gauss + line

and use that with:

mod = Model(gaussian_plus_line)

But we already had a function for a gaussian function, and maybe we’ll discover that a linear background isn’t sufficient which would mean the model function would have to be changed.

Instead, lmfit allows models to be combined into a CompositeModel. As an alternative to including a linear background in our model function, we could define a linear function:

def line(x, slope, intercept):
    """a line"""
    return slope*x + intercept

and build a composite model with just:

mod = Model(gaussian) + Model(line)

This model has parameters for both component models, and can be used as:

# <examples/doc_model_two_components.py>
import matplotlib.pyplot as plt
from numpy import exp, loadtxt, pi, sqrt

from lmfit import Model

data = loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1] + 0.25*x - 1.0


def gaussian(x, amp, cen, wid):
    """1-d gaussian: gaussian(x, amp, cen, wid)"""
    return (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2))


def line(x, slope, intercept):
    """a line"""
    return slope*x + intercept


mod = Model(gaussian) + Model(line)
pars = mod.make_params(amp=5, cen=5, wid={'value': 1, 'min': 0},
                       slope=0, intercept=1)

result = mod.fit(y, pars, x=x)
print(result.fit_report())

plt.plot(x, y, 'o')
plt.plot(x, result.init_fit, '--', label='initial fit')
plt.plot(x, result.best_fit, '-', label='best fit')
plt.legend()
plt.show()
# <end examples/doc_model_two_components.py>

which prints out the results:

[[Model]]
    (Model(gaussian) + Model(line))
[[Fit Statistics]]
    # fitting method   = leastsq
    # function evals   = 55
    # data points      = 101
    # variables        = 5
    chi-square         = 2.57855517
    reduced chi-square = 0.02685995
    Akaike info crit   = -360.457020
    Bayesian info crit = -347.381417
    R-squared          = 0.99194643
[[Variables]]
    amp:        8.45930976 +/- 0.12414531 (1.47%) (init = 5)
    cen:        5.65547889 +/- 0.00917673 (0.16%) (init = 5)
    wid:        0.67545513 +/- 0.00991697 (1.47%) (init = 1)
    slope:      0.26484403 +/- 0.00574892 (2.17%) (init = 0)
    intercept: -0.96860189 +/- 0.03352202 (3.46%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
    C(slope, intercept) = -0.7954
    C(amp, wid)         = +0.6664
    C(amp, intercept)   = -0.2216
    C(amp, slope)       = -0.1692
    C(cen, slope)       = -0.1618
    C(wid, intercept)   = -0.1477
    C(cen, intercept)   = +0.1287
    C(wid, slope)       = -0.1127

and shows the plot on the left.

_images/model_43_0.svg

On the left, data is shown in blue dots, the total fit is shown in solid green line, and the initial fit is shown as a orange dashed line. The figure on the right shows again the data in blue dots, the Gaussian component as a orange dashed line and the linear component as a green dashed line. It is created using the following code:

comps = result.eval_components()
plt.plot(x, y, 'o')
plt.plot(x, comps['gaussian'], '--', label='Gaussian component')
plt.plot(x, comps['line'], '--', label='Line component')

The components were generated after the fit using the ModelResult.eval_components() method of the result, which returns a dictionary of the components, using keys of the model name (or prefix if that is set). This will use the parameter values in result.params and the independent variables (x) used during the fit. Note that while the ModelResult held in result does store the best parameters and the best estimate of the model in result.best_fit, the original model and parameters in pars are left unaltered.

You can apply this composite model to other data sets, or evaluate the model at other values of x. You may want to do this to give a finer or coarser spacing of data point, or to extrapolate the model outside the fitting range. This can be done with:

xwide = linspace(-5, 25, 3001)
predicted = mod.eval(result.params, x=xwide)

In this example, the argument names for the model functions do not overlap. If they had, the prefix argument to Model would have allowed us to identify which parameter went with which component model. As we will see in the next chapter, using composite models with the built-in models provides a simple way to build up complex models.

class CompositeModel(left, right, op[, **kws])

Combine two models (left and right) with binary operator (op).

Normally, one does not have to explicitly create a CompositeModel, but can use normal Python operators +, -, *, and / to combine components as in:

>>> mod = Model(fcn1) + Model(fcn2) * Model(fcn3)
Parameters:
  • left (Model) – Left-hand model.

  • right (Model) – Right-hand model.

  • op (callable binary operator) – Operator to combine left and right models.

  • **kws (optional) – Additional keywords are passed to Model when creating this new model.

Notes

The two models can use different independent variables.

Note that when using built-in Python binary operators, a CompositeModel will automatically be constructed for you. That is, doing:

mod = Model(fcn1) + Model(fcn2) * Model(fcn3)

will create a CompositeModel. Here, left will be Model(fcn1), op will be operator.add(), and right will be another CompositeModel that has a left attribute of Model(fcn2), an op of operator.mul(), and a right of Model(fcn3).

To use a binary operator other than +, -, *, or / you can explicitly create a CompositeModel with the appropriate binary operator. For example, to convolve two models, you could define a simple convolution function, perhaps as:

import numpy as np

def convolve(dat, kernel):
    """simple convolution of two arrays"""
    npts = min(len(dat), len(kernel))
    pad = np.ones(npts)
    tmp = np.concatenate((pad*dat[0], dat, pad*dat[-1]))
    out = np.convolve(tmp, kernel, mode='valid')
    noff = int((len(out) - npts) / 2)
    return (out[noff:])[:npts]

which extends the data in both directions so that the convolving kernel function gives a valid result over the data range. Because this function takes two array arguments and returns an array, it can be used as the binary operator. A full script using this technique is here:

# <examples/doc_model_composite.py>
import matplotlib.pyplot as plt
import numpy as np

from lmfit import CompositeModel, Model
from lmfit.lineshapes import gaussian, step

# create data from broadened step
x = np.linspace(0, 10, 201)
y = step(x, amplitude=12.5, center=4.5, sigma=0.88, form='erf')
np.random.seed(0)
y = y + np.random.normal(scale=0.35, size=x.size)


def jump(x, mid):
    """Heaviside step function."""
    o = np.zeros(x.size)
    imid = max(np.where(x <= mid)[0])
    o[imid:] = 1.0
    return o


def convolve(arr, kernel):
    """Simple convolution of two arrays."""
    npts = min(arr.size, kernel.size)
    pad = np.ones(npts)
    tmp = np.concatenate((pad*arr[0], arr, pad*arr[-1]))
    out = np.convolve(tmp, kernel, mode='valid')
    noff = int((len(out) - npts) / 2)
    return out[noff:noff+npts]


# create Composite Model using the custom convolution operator
mod = CompositeModel(Model(jump), Model(gaussian), convolve)

# create parameters for model.  Note that 'mid' and 'center' will be highly
# correlated. Since 'mid' is used as an integer index, it will be very
# hard to fit, so we fix its value
pars = mod.make_params(amplitude=dict(value=1, min=0),
                       center=3.5,
                       sigma=dict(value=1.5, min=0),
                       mid=dict(value=4, vary=False))

# fit this model to data array y
result = mod.fit(y, params=pars, x=x)

print(result.fit_report())

# generate components
comps = result.eval_components(x=x)

# plot results
fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))

axes[0].plot(x, y, 'bo')
axes[0].plot(x, result.init_fit, 'k--', label='initial fit')
axes[0].plot(x, result.best_fit, 'r-', label='best fit')
axes[0].legend()

axes[1].plot(x, y, 'bo')
axes[1].plot(x, 10*comps['jump'], 'k--', label='Jump component')
axes[1].plot(x, 10*comps['gaussian'], 'r-', label='Gaussian component')
axes[1].legend()

plt.show()
# <end examples/doc_model_composite.py>

which prints out the results:

[[Model]]
    (Model(jump) <function convolve at 0x181e177e0> Model(gaussian))
[[Fit Statistics]]
    # fitting method   = leastsq
    # function evals   = 33
    # data points      = 201
    # variables        = 3
    chi-square         = 24.7562335
    reduced chi-square = 0.12503148
    Akaike info crit   = -414.939746
    Bayesian info crit = -405.029832
    R-squared          = 0.99632577
[[Variables]]
    mid:        4 (fixed)
    amplitude:  0.62508458 +/- 0.00189732 (0.30%) (init = 1)
    center:     5.50853669 +/- 0.00973231 (0.18%) (init = 3.5)
    sigma:      0.59576097 +/- 0.01348579 (2.26%) (init = 1.5)
[[Correlations]] (unreported correlations are < 0.100)
    C(amplitude, center) = +0.3292
    C(amplitude, sigma)  = +0.2680

and shows the plots:

_images/model_51_0.svg

Using composite models with built-in or custom operators allows you to build complex models from testable sub-components.