Note
Go to the end to download the full example code.
Model - savemodelresult2ΒΆ
[[Model]]
((Model(gaussian, prefix='g1_') + Model(gaussian, prefix='g2_')) + Model(exponential, prefix='exp_'))
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 46
# data points = 250
# variables = 8
chi-square = 1247.52821
reduced chi-square = 5.15507524
Akaike info crit = 417.864631
Bayesian info crit = 446.036318
R-squared = 0.99648654
[[Variables]]
exp_amplitude: 99.0183278 +/- 0.53748593 (0.54%) (init = 162.2102)
exp_decay: 90.9508853 +/- 1.10310778 (1.21%) (init = 93.24905)
g1_amplitude: 4257.77360 +/- 42.3836478 (1.00%) (init = 2000)
g1_center: 107.030956 +/- 0.15006851 (0.14%) (init = 105)
g1_sigma: 16.6725772 +/- 0.16048381 (0.96%) (init = 15)
g1_fwhm: 39.2609181 +/- 0.37791049 (0.96%) == '2.3548200*g1_sigma'
g1_height: 101.880230 +/- 0.59217173 (0.58%) == '0.3989423*g1_amplitude/max(1e-15, g1_sigma)'
g2_amplitude: 2493.41735 +/- 36.1697789 (1.45%) (init = 2000)
g2_center: 153.270102 +/- 0.19466802 (0.13%) (init = 155)
g2_sigma: 13.8069464 +/- 0.18679695 (1.35%) (init = 15)
g2_fwhm: 32.5128735 +/- 0.43987320 (1.35%) == '2.3548200*g2_sigma'
g2_height: 72.0455941 +/- 0.61722243 (0.86%) == '0.3989423*g2_amplitude/max(1e-15, g2_sigma)'
[[Correlations]] (unreported correlations are < 0.100)
C(g1_amplitude, g1_sigma) = +0.8243
C(g2_amplitude, g2_sigma) = +0.8154
C(exp_amplitude, exp_decay) = -0.6946
C(g1_sigma, g2_center) = +0.6842
C(g1_center, g2_amplitude) = -0.6689
C(g1_center, g2_sigma) = -0.6520
C(g1_amplitude, g2_center) = +0.6477
C(g1_center, g2_center) = +0.6205
C(g1_center, g1_sigma) = +0.5075
C(exp_decay, g1_amplitude) = -0.5074
C(g1_sigma, g2_amplitude) = -0.4915
C(g2_center, g2_sigma) = -0.4889
C(g1_sigma, g2_sigma) = -0.4826
C(g2_amplitude, g2_center) = -0.4763
C(exp_decay, g2_amplitude) = -0.4270
C(g1_amplitude, g1_center) = +0.4183
C(g1_amplitude, g2_sigma) = -0.4010
C(g1_amplitude, g2_amplitude) = -0.3071
C(exp_amplitude, g2_amplitude) = +0.2821
C(exp_decay, g1_sigma) = -0.2520
C(exp_decay, g2_sigma) = -0.2329
C(exp_amplitude, g2_sigma) = +0.1714
C(exp_decay, g2_center) = -0.1514
C(exp_amplitude, g1_amplitude) = +0.1478
C(exp_decay, g1_center) = +0.1055
# <examples/doc_model_savemodelresult2.py>
import numpy as np
from lmfit.model import save_modelresult
from lmfit.models import ExponentialModel, GaussianModel
dat = np.loadtxt('NIST_Gauss2.dat')
x = dat[:, 1]
y = dat[:, 0]
exp_mod = ExponentialModel(prefix='exp_')
pars = exp_mod.guess(y, x=x)
gauss1 = GaussianModel(prefix='g1_')
pars.update(gauss1.make_params(center=dict(value=105, min=75, max=125),
sigma=dict(value=15, min=0),
amplitude=dict(value=2000, min=0)))
gauss2 = GaussianModel(prefix='g2_')
pars.update(gauss2.make_params(center=dict(value=155, min=125, max=175),
sigma=dict(value=15, min=0),
amplitude=dict(value=2000, min=0)))
mod = gauss1 + gauss2 + exp_mod
init = mod.eval(pars, x=x)
result = mod.fit(y, pars, x=x)
save_modelresult(result, 'nistgauss_modelresult.sav')
print(result.fit_report())
# <end examples/doc_model_savemodelresult2.py>
Total running time of the script: (0 minutes 0.085 seconds)