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The uncertainties package is an open source Python library for doing calculations on numbers that have uncertainties
(like 3.14±0.01) that are common in many scientific fields. The calculations done with this package will propagate the
uncertainties to the result of mathematical calculations. The uncertainties package takes the pain and complexity
out of uncertainty calculations and error propagation. Here is a quick taste of how to use uncertainties:

>>> from uncertainties import ufloat
>>> x = ufloat(2, 0.1) # x = 2+/-0.1
>>> y = ufloat(3, 0.2) # y = 3+/-0.2
>>> print(2*x)
4.00+/-0.20
>>> print(x+y)
5.00+/-0.22
>>> print(x*y)
6.0+/-0.5

The uncertainties library calculates uncertainties using linear error propagation theory by automatically calculating
derivatives and analytically propagating these to the results. Correlations between variables are automatically handled.
This library can also yield the derivatives of any expression with respect to the variables that have uncertain values.
For other approaches, see soerp (using higher-order terms) and mcerp (using a Monte-Carlo approach).

The source code for the uncertainties package is licensed under the Revised BSD License. This documentation is
licensed under the CC-SA-3 License.
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1.1 Installation and Credits

1.1.1 Download and Installation

The uncertainties package supports Python versions 3.8 and higher. Earlier versions of Python are not tested, but
may still work. Development version of Python (currently, 3.13) are likely to work, but are not regularly tested.

To install uncertainties, use:

pip install uncertainties

You can upgrade from an older version of uncertainties with:

pip install --upgrade uncertainties

Other packaging systems such as Anaconda, MacPorts, or Linux package manager may also maintain packages for
uncertainties, so that you may also be able to install using something like

conda install -c conda-forge uncertainties

sudo port install py**-uncertainties

or

sudo apt get python-uncertainties

depending on your platform and installation of Python. For all installations of Python, using pip should work and is
therefore recommended.

1.1.2 Source code and Development Version

You can download the latest source package archive from the Python Package Index (PyPI) and unpack it, or from the
GitHub releases page. This package can be unpacked using unzip, tar xf , or other similar utilities, and then installed
with

python -m pip install .

To work with the development version, use git to fork or clone the code:
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git clone git@github.com:lmfit/uncertainties.git

The uncertainties package is written in pure Python and has no external dependencies. If available (and recom-
mended), the NumPy package can be used. Running the test suite requires pytest and pytest_cov, and building these
docs requires sphinx. To install these optional packages, use one of:

pip install ".[arrays]" # to install numpy
pip install ".[test]" # to enable running the tests
pip install ".[doc]" # to enable building the docs
pip install ".[all]" # to enable all of these options

1.1.3 Getting Help

If you have questions about uncertainties or run into trouble, use the GitHub Discussions page. For bug reports,
use the GitHub Issues pages.

1.1.4 Credits

The uncertainties package was written and developed by Eric O. LEBIGOT (EOL). EOL also maintained the
package until 2024, when the GitHub project was moved to the lmfit GitHub organization to allow more sustainable
development and maintenance. Current members of the devlopment and maintenance team include Andrew G Savage,
Justin Gerber, Eric O Legibot, Matt Newville, and Will Shanks. Contributions and suggestions for development are
welcome.

1.1.5 How to cite this package

If you use this package for a publication, please cite it as Uncertainties: a Python package for calculations with uncer-
tainties, Eric O. LEBIGOT. A version number can be added, but is optional.

1.1.6 Acknowledgments

Eric O. LEBIGOT (EOL) thanks all the people who made generous donations: that help to keep this project alive by
providing positive feedback.

EOL greatly appreciates having gotten key technical input from Arnaud Delobelle, Pierre Cladé, and Sebastian Walter.
Patches by Pierre Cladé, Tim Head, José Sabater Montes, Martijn Pieters, Ram Rachum, Christoph Deil, Gabi Davar,
Roman Yurchak and Paul Romano are gratefully acknowledged.

EOL also thanks users who contributed with feedback and suggestions, which greatly helped improve this program:
Joaquin Abian, Jason Moore, Martin Lutz, Víctor Terrón, Matt Newville, Matthew Peel, Don Peterson, Mika Pflueger,
Albert Puig, Abraham Lee, Arian Sanusi, Martin Laloux, Jonathan Whitmore, Federico Vaggi, Marco A. Ferra, Hernan
Grecco, David Zwicker, James Hester, Andrew Nelson, and many others.

EOL is grateful to the Anaconda, macOS and Linux distribution maintainers of this package (Jonathan Stickel, David
Paleino, Federico Ceratto, Roberto Colistete Jr, Filipe Pires Alvarenga Fernandes, and Felix Yan) and also to Gabi Davar
and Pierre Raybaut for including it in Python(x,y) and to Christoph Gohlke for including it in his Base distribution of
scientific Python packages for Windows.

4 Chapter 1. Table of Contents

http://numpy.scipy.org/
https://github.com/lmfit/uncertainties/discussions
https://github.com/lmfit/uncertainties/issues
http://linkedin.com/pub/eric-lebigot/22/293/277
https://github.com/lmfit/
https://github.com/andrewgsavage
https://github.com/jagerber48
https://github.com/lebigot
https://github.com/newville
https://github.com/wshanks
https://python-xy.github.io/
http://www.lfd.uci.edu/~gohlke/pythonlibs/


uncertainties Python package Documentation, Release 3.2.2

1.1.7 License

This software is released under the Revised BSD License (© 2010–2024, Eric O. LEBIGOT [EOL]).

1.2 User Guide

1.2.1 Basic usage

Basic mathematical operations involving numbers with uncertainties requires importing the ufloat() function which
creates a Variable: number with both a nominal value and an uncertainty.

>>> from uncertainties import ufloat
>>> x = ufloat(2.7, 0.01) # a Variable with a value 2.7+/-0.01

The uncertainties module contains sub-modules for advanced mathematical functions, and arrays and matrices,
which can be accessed as well.

1.2.2 Creating Variables: numbers with uncertainties

To create a number with uncertainties or Variable, use the ufloat() function, which takes a nominal value (which
can be interpreted as the most likely value, or the mean or central value of the distribution of values), a standard error
(the standard deviation or 1− 𝜎 uncertainty), and an optional tag:

>>> x = ufloat(2.7, 0.01) # x = 2.7+/-0.01
>>> y = ufloat(4.5, 1.2, tag='y_variable') # x = 4..5+/-1.2

You can access the nominal value and standard deviation for any Variable with the nominal_value and std_dev attributes:

>>> print(x.nominal_value, x.std_dev)
2.7 0.01

Because these are fairly long to type, for convenience, nominal_value can be abbreviated as n and std_dev as s:

>>> print(x.n, x.s)
2.7 0.01

uncertainties Variables can also be created from one of many string representations. The following forms will all create
Variables with the same value:

>>> from uncertainties import ufloat_fromstr
>>> x = ufloat(0.2, 0.01)
>>> x = ufloat_fromstr("0.20+/-0.01")
>>> x = ufloat_fromstr("(2+/-0.1)e-01") # Factored exponent
>>> x = ufloat_fromstr("0.20(1)") # Short-hand notation
>>> x = ufloat_fromstr("20(1)e-2") # Exponent notation
>>> x = ufloat_fromstr(u"0.20±0.01") # Pretty-print form
>>> x = ufloat_fromstr("0.20") # Automatic uncertainty of +/-1 on last digit

More details on the ufloat() and ufloat_from_str() can be found in API: Application Programming Interface.

1.2. User Guide 5
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1.2.3 Basic math with uncertain Variables

Uncertainties variables created in ufloat() or ufloat_fromstr() can be used in basic mathematical calculations
(+, -, *, /, **) as with other Python numbers and variables.

>>> t = ufloat(0.2, 0.01)
>>> double = 2.0*t
>>> print(double)
0.4+/-0.02
>>> square = t**2
>>> print(square)
0.040+/-0.004

When adding two Variables, the uncertainty in the result is the quadrature sum (square-root of the sum of squares) of
the uncertainties of the two Variables:

>>> x = ufloat(20, 4)
>>> y = ufloat(12, 3)
>>> print(x+y)
32.0+/-5.0

We can check that error propagation when adding two independent variables (using the abbreviation .s for the standard
error):

>>> from math import sqrt
>>> (x+y).s == sqrt(x.s**2 + y.s**2)
True

Multiplying two Variables will properly propagate those uncertainties too:

>>> print(x*y)
240.0+/-76.83749084919418
>>> (x*y).s == (x*y).n * sqrt((x.s/x.n)**2 + (y.s/y.n)**2 )
True

But note that adding a Variable to itself does not add its uncertainties in quadrature, but are simply scaled:

>>> print(x+x)
40.0+/-8.0
>>> print(3*x + 10)
70.0+/-12.0

It is important to understand that calculations done with Variable know about the correlation between the Variables.
Variables created with ufloat() (and ufloat_fromstr()) are completely uncorrelated with each other, but are
known to be completely correlated with themselves. This means that

>>> x = ufloat(5, 0.5)
>>> y = ufloat(5, 0.5)
>>> x - y
0.0+/-0.7071067811865476
>>> x - x
0.0+/-0

For two different Variables, uncorrelated uncertainties will be propagated. But when doing a calculation with a single
Variable, the uncertainties are correlated, and calculations will reflect that.

6 Chapter 1. Table of Contents
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1.2.4 Mathematical operations with uncertain Variables

Besides being able to apply basic mathematical operations to uncertainties Variables, this package provides generalized
versions of 40 of the the functions from the standard math module. These mathematical functions are found in the
uncertainties.umath module:

>>> from uncertainties.umath import sin, exp, sqrt
>>> x = ufloat(0.2, 0.01)
>>> sin(x)
0.19866933079506122+/-0.009800665778412416
>>> sin(x*x)
0.03998933418663417+/-0.003996800426643912
>>> exp(-x/3.0)
0.9355069850316178+/-0.003118356616772059
>>> sqrt(230*x + 3)
7.0+/-0.16428571428571428

The functions in the uncertainties.umath module include:

acos, acosh, asin, asinh, atan, atan2, atanh, ceil, copysign, cos, cosh, degrees, erf, erfc,
exp, expm1, fabs, factorial, floor, fmod, frexp, fsum, gamma, hypot, isinf, isnan, ldexp,
lgamma, log, log10, log1p, modf, pow, radians, sin, sinh, sqrt, tan, tanh, trunc

1.2.5 Comparison operators

Comparison operators (==, !=, >, <, >=, and <=) for Variables with uncertainties are somewhat complicated, and need
special attention. As we hinted at above, and will explore in more detail below and in the Technical Guide, this relates
to the correlation between Variables.

Equality and inequality comparisons

If we compare the equality of two Variables with the same nominal value and uncertainty, we see

>>> x = ufloat(5, 0.5)
>>> y = ufloat(5, 0.5)
>>> x == x
True
>>> x == y
False

The difference here is that although the two Python objects have the same nominal value and uncertainty, these are
independent, uncorrelated values. It is not exactly true that the difference is based on identity, note that

>>> x == (1.0*x)
True
>>> x is (1.0*x)
False

In order for the result of two calculations with uncertainties to be considered equal, the uncertainties package does
not test whether the nominal value and the uncertainty have the same value. Instead it checks whether the difference of
the two calculations has a nominal value of 0 and an uncertainty of 0.

1.2. User Guide 7
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>>> (x -x)
0.0+/-0
>>> (x -y)
0.0+/-0.7071067811865476

Comparisons of magnitude

The concept of comparing the magnitude of values with uncertainties is a bit complicated. That is, a Variable with a
value of 25 +/- 10 might be greater than a Variable with a value of 24 +/- 8 most of the time, but sometimes it might be
less than it. The uncertainties package takes the simple approach of comparing nominal values. That is

>>> a = ufloat(25, 10)
>>> b = ufloat(24, 8)
>>> a > b
True

Note that combining this comparison and the above discussion of == and != can lead to a result that maybe somewhat
surprising:

>>> a = ufloat(25, 10)
>>> b = ufloat(25, 8)
>>> a >= b
False
>>> a > b
False
>>> a == b
False
>>> a.nominal_value >= b.nominal_value
True

That is, since a is neither greater than b (nominal value only) nor equal to b, it cannot be greater than or equal to b.

1.2.6 Handling NaNs and infinities

NaN values can appear in either the nominal value or uncertainty of a Variable. As is always the case, care must be
exercised when handling NaN values.

While math.isnan() and numpy.isnan() will raise TypeError exceptions for uncertainties Variables (because an
uncertainties Variable is not a float), the function umath.isnan() will return whether the nominal value of a Variable
is NaN. Similarly, umath.isinf() will return whether the nominal value of a Variable is infinite.

To check whether the uncertainty is NaN or Inf, use one of math.isnan(), math.isinf(), nupmy.isnan(), or ,
nupmy.isinf() on the std_dev attribute.
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1.2.7 Automatic correlations

Correlations between variables are automatically handled whatever the number of variables involved, and whatever
the complexity of the calculation. For example, when x is the number with uncertainty defined above,

>>> square = x**2
>>> print(square)
0.040+/-0.004
>>> square - x*x
0.0+/-0
>>> y = x*x + 1
>>> y - square
1.0+/-0

The last two printed results above have a zero uncertainty despite the fact that x, y and square have a non-zero
uncertainty: the calculated functions give the same value for all samples of the random variable x.

Thanks to the automatic correlation handling, calculations can be performed in as many steps as necessary, exactly as
with simple floats. When various quantities are combined through mathematical operations, the result is calculated by
taking into account all the correlations between the quantities involved. All of this is done transparently.

1.2.8 Access to the individual sources of uncertainty

The various contributions to an uncertainty can be obtained through the error_components() method, which maps
the independent variables a quantity depends on to their contribution to the total uncertainty. According to
linear error propagation theory (which is the method followed by uncertainties), the sum of the squares of these
contributions is the squared uncertainty.

The individual contributions to the uncertainty are more easily usable when the variables are tagged:

>>> u = ufloat(1, 0.1, "u variable") # Tag
>>> v = ufloat(10, 0.1, "v variable")
>>> sum_value = u+2*v
>>> sum_value
21.0+/-0.223606797749979
>>> for (var, error) in sum_value.error_components().items():
... print("{}: {}".format(var.tag, error))
...
u variable: 0.1
v variable: 0.2

The variance (i.e. squared uncertainty) of the result (sum_value) is the quadratic sum of these independent uncertain-
ties, as it should be (0.1**2 + 0.2**2).

The tags do not have to be distinct. For instance, multiple random variables can be tagged as "systematic", and their
contribution to the total uncertainty of result can simply be obtained as:

>>> syst_error = math.sqrt(sum( # Error from *all* systematic errors
... error**2
... for (var, error) in result.error_components().items()
... if var.tag == "systematic"))

The remaining contribution to the uncertainty is:

1.2. User Guide 9
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>>> other_error = math.sqrt(result.std_dev**2 - syst_error**2)

The variance of result is in fact simply the quadratic sum of these two errors, since the variables from result.
error_components() are independent.

1.2.9 Covariance and correlation matrices

Covariance matrix

The covariance matrix between various variables or calculated quantities can be simply obtained:

>>> sum_value = u+2*v
>>> cov_matrix = uncertainties.covariance_matrix([u, v, sum_value])

has value

[[0.01, 0.0, 0.01],
[0.0, 0.01, 0.02],
[0.01, 0.02, 0.05]]

In this matrix, the zero covariances indicate that u and v are independent from each other; the last column shows that
sum_value does depend on these variables. The uncertainties package keeps track at all times of all correlations
between quantities (variables and functions):

>>> sum_value - (u+2*v)
0.0+/-0

Correlation matrix

If the NumPy package is available, the correlation matrix can be obtained as well:

>>> corr_matrix = uncertainties.correlation_matrix([u, v, sum_value])
>>> corr_matrix
array([[ 1. , 0. , 0.4472136 ],

[ 0. , 1. , 0.89442719],
[ 0.4472136 , 0.89442719, 1. ]])

1.2.10 Correlated variables

Reciprocally, correlated variables can be created transparently, provided that the NumPy package is available.
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Use of a covariance matrix

Correlated variables can be obtained through the covariance matrix:

>>> (u2, v2, sum2) = uncertainties.correlated_values([1, 10, 21], cov_matrix)

creates three new variables with the listed nominal values, and the given covariance matrix:

>>> sum_value
21.0+/-0.223606797749979
>>> sum2
21.0+/-0.223606797749979
>>> sum2 - (u2+2*v2)
0.0+/-3.83371856862256e-09

The theoretical value of the last expression is exactly zero, like for sum - (u+2*v), but numerical errors yield a small
uncertainty (3e-9 is indeed very small compared to the uncertainty on sum2: correlations should in fact cancel the
uncertainty on sum2).

The covariance matrix is the desired one:

>>> uncertainties.covariance_matrix([u2, v2, sum2])

reproduces the original covariance matrix cov_matrix (up to rounding errors).

Use of a correlation matrix

Alternatively, correlated values can be defined through:

• a sequence of nominal values and standard deviations, and

• a correlation matrix between each variable of this sequence (the correlation matrix is the covariance matrix
normalized with individual standard deviations; it has ones on its diagonal)—in the form of a NumPy array-like
object, e.g. a list of lists, or a NumPy array.

Example:

>>> (u3, v3, sum3) = uncertainties.correlated_values_norm(
... [(1, 0.1), (10, 0.1), (21, 0.22360679774997899)], corr_matrix)
>>> print(u3)
1.00+/-0.10

The three returned numbers with uncertainties have the correct uncertainties and correlations (corr_matrix can be
recovered through correlation_matrix()).

1.2.11 Making custom functions accept numbers with uncertainties

This package allows code which is not meant to be used with numbers with uncertainties to handle them anyway.
This is for instance useful when calling external functions (which are out of the user’s control), including functions
written in C or Fortran. Similarly, functions that do not have a simple analytical form can be automatically wrapped
so as to also work with arguments that contain uncertainties.

It is thus possible to take a function f() that returns a single float, and to automatically generalize it so that it also
works with numbers with uncertainties:

1.2. User Guide 11
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>>> wrapped_f = uncertainties.wrap(f)

The new function wrapped_f() (optionally) accepts a number with uncertainty in place of any float argument of f()
(note that floats contained instead inside arguments of f(), like in a list or a NumPy array, cannot be replaced by
numbers with uncertainties). wrapped_f() returns the same values as f(), but with uncertainties.

With a simple wrapping call like above, uncertainties in the function result are automatically calculated numerically.
Analytical uncertainty calculations can be performed if derivatives are provided to wrap().

1.2.12 Miscellaneous utilities

It is sometimes useful to modify the error on certain parameters so as to study its impact on a final result. With this
package, the uncertainty of a variable can be changed on the fly:

>>> sum_value = u+2*v
>>> sum_value
21.0+/-0.223606797749979
>>> prev_uncert = u.std_dev
>>> u.std_dev = 10
>>> sum_value
21.0+/-10.00199980003999
>>> u.std_dev = prev_uncert

The relevant concept is that sum_value does depend on the variables u and v: the uncertainties package keeps
track of this fact, as detailed in the Technical Guide, and uncertainties can thus be updated at any time.

When manipulating ensembles of numbers, some of which contain uncertainties while others are simple floats, it can
be useful to access the nominal value and uncertainty of all numbers in a uniform manner. This is what the
nominal_value() and std_dev() functions do:

>>> print(uncertainties.nominal_value(x))
0.2
>>> print(uncertainties.std_dev(x))
0.01
>>> uncertainties.nominal_value(3)
3
>>> uncertainties.std_dev(3)
0.0

Finally, a utility method is provided that directly yields the standard score (number of standard deviations) between a
number and a result with uncertainty: with x equal to 0.20±0.01,

>>> x.std_score(0.17)
-3.0

12 Chapter 1. Table of Contents
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1.2.13 Derivatives

Since the application of linear error propagation theory involves the calculation of derivatives, this package automat-
ically performs such calculations; users can thus easily get the derivative of an expression with respect to any of its
variables:

>>> u = ufloat(1, 0.1)
>>> v = ufloat(10, 0.1)
>>> sum_value = u+2*v
>>> sum_value.derivatives[u]
1.0
>>> sum_value.derivatives[v]
2.0

These values are obtained with a fast differentiation algorithm.

1.2.14 Additional information

The capabilities of the uncertainties package in terms of array handling are detailed in Uncertainties and numpy
arrays.

Details about the theory behind this package and implementation information are given in the Advanced Topics.

1.3 Uncertainties and numpy arrays

1.3.1 Arrays of uncertainties Variables

It is possible to put uncertainties Variable in NumPy arrays and matrices:

>>> arr = numpy.array([ufloat(1, 0.01), ufloat(2, 0.1)])
>>> 2*arr
[2.0+/-0.02 4.0+/-0.2]
>>> print arr.sum()
3.00+/-0.10

Many common operations on NumPy arrays can be performed transparently even when these arrays contain numbers
with uncertainties.

1.3.2 The unumpy package

While basic operations on arrays that contain numbers with uncertainties can be performed without it, the unumpy
package is useful for more advanced uses.

This package contains:

1. utilities that help with the creation and manipulation of NumPy arrays and matrices of numbers with uncertainties;

2. generalizations of multiple NumPy functions so that they also work with arrays that contain numbers with uncer-
tainties.

Operations on arrays (including their cosine, etc.) can thus be performed transparently.

These features can be made available with

1.3. Uncertainties and numpy arrays 13
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>>> from uncertainties import unumpy

Creation and manipulation of arrays and matrices

Arrays

Arrays of numbers with uncertainties can be built from values and uncertainties:

>>> arr = unumpy.uarray([1, 2], [0.01, 0.002])
>>> print(arr)
[1.0+/-0.01 2.0+/-0.002]

NumPy arrays of numbers with uncertainties can also be built directly through NumPy, thanks to NumPy’s support of
arrays of arbitrary objects:

>>> arr = numpy.array([ufloat(1, 0.1), ufloat(2, 0.002)])

Matrices

Matrices of numbers with uncertainties are best created in one of two ways. The first way is similar to using uarray():

>>> mat = unumpy.umatrix([1, 2], [0.01, 0.002])

Matrices can also be built by converting arrays of numbers with uncertainties into matrices through the unumpy.matrix
class:

>>> mat = unumpy.matrix(arr)

unumpy.matrix objects behave like numpy.matrix objects of numbers with uncertainties, but with better support for
some operations (such as matrix inversion). For instance, regular NumPy matrices cannot be inverted, if they contain
numbers with uncertainties (i.e., numpy.matrix([[ufloat(...), ...]]).I does not work). This is why the
unumpy.matrix class is provided: both the inverse and the pseudo-inverse of a matrix can be calculated in the usual
way: if mat is a unumpy.matrix,

>>> print(mat.I)

does calculate the inverse or pseudo-inverse of mat with uncertainties.

Uncertainties and nominal values

Nominal values and uncertainties in arrays (and matrices) can be directly accessed (through functions that work on
pure float arrays too):

>>> unumpy.nominal_values(arr)
array([ 1., 2.])
>>> unumpy.std_devs(mat)
matrix([[ 0.1 , 0.002]])

14 Chapter 1. Table of Contents
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Mathematical functions

This module defines uncertainty-aware mathematical functions that generalize those from uncertainties.umath so
that they work on NumPy arrays of numbers with uncertainties instead of just scalars:

>>> print(unumpy.cos(arr)) # Cosine of each array element

NumPy’s function names are used, and not those from the math module (for instance, unumpy.arccos() is defined,
like in NumPy, and is not named acos() like in the math module).

The definition of the mathematical quantities calculated by these functions is available in the documentation for
uncertainties.umath.

NaN testing and NaN-aware operations

One particular function pertains to NaN testing: unumpy.isnan(). It returns true for each NaN nominal value (and
false otherwise).

Since NaN±1 is not (the scalar) NaN, functions like numpy.nanmean() do not skip such values. This is where
unumpy.isnan() is useful, as it can be used for masking out numbers with a NaN nominal value:

>>> nan = float("nan")
>>> arr = numpy.array([nan, uncertainties.ufloat(nan, 1), uncertainties.ufloat(1, nan),␣
→˓2])
>>> arr
array([nan, nan+/-1.0, 1.0+/-nan, 2], dtype=object)
>>> arr[~unumpy.isnan(arr)].mean()
1.5+/-nan

or equivalently, by using masked arrays:

>>> masked_arr = numpy.ma.array(arr, mask=unumpy.isnan(arr))
>>> masked_arr.mean()
1.5+/-nan

In this case the uncertainty is NaN as it should be, because one of the numbers does have an undefined uncertainty,
which makes the final uncertainty undefined (but the average is well defined). In general, uncertainties are not NaN
and one obtains the mean of the non-NaN values.

1.3.3 Storing arrays in text format

Arrays of numbers with uncertainties can be directly pickled, saved to file and read from a file. Pickling has the
advantage of preserving correlations between errors.

Storing arrays in text format loses correlations between errors but has the advantage of being both computer- and
human-readable. This can be done through NumPy’s savetxt() and loadtxt().

Writing the array to file can be done by asking NumPy to use the representation of numbers with uncertainties (instead
of the default float conversion):

>>> numpy.savetxt('arr.txt', arr, fmt='%r')

This produces a file arr.txt that contains a text representation of the array:

1.3. Uncertainties and numpy arrays 15
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1.0+/-0.01
2.0+/-0.002

The file can then be read back by instructing NumPy with numpy.loadtxt(), but for object arrays, this requires a
converter function for each column separately. We can use func:uncertainties.ufloat_fromstr, but numpy.loadtxt()
passes bytes to converters, they must first be converted into a string. In addition the number of maximum number of
columns must be known. An example of using all of this to unpack the data saved with numpy.savetxt() would be:

>>> from uncertainties import ufloat_fromstr
>>> max_cols = 1
>>> converters = {col: lambda dat: ufloat_fromstr(dat.decode("utf-8"))
.... for col in range(max_cols)}
>>> arr = numpy.loadtxt('arr.txt', converters=converters, dtype=object)

1.3.4 Additional array functions: unumpy.ulinalg

The unumpy.ulinalg module contains more uncertainty-aware functions for arrays that contain numbers with uncer-
tainties.

It currently offers generalizations of two functions from numpy.linalg that work on arrays (or matrices) that contain
numbers with uncertainties, the matrix inverse and pseudo-inverse:

>>> unumpy.ulinalg.inv([[ufloat(2, 0.1)]])
array([[0.5+/-0.025]], dtype=object)
>>> unumpy.ulinalg.pinv(mat)
matrix([[0.2+/-0.0012419339757],

[0.4+/-0.00161789987329]], dtype=object)

1.4 Formatting Variables with uncertainties

1.4.1 Printing

Numbers with uncertainties can be printed conveniently:

>>> print(x)
0.200+/-0.010

The resulting form can generally be parsed back with ufloat_fromstr() (except for the LaTeX form).

The nominal value and the uncertainty always have the same precision: this makes it easier to compare them.
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Standard formats

More control over the format can be obtained (in Python 2.6+) through the usual format() method of strings:

>>> print('Result = {:10.2f}'.format(x))
Result = 0.20+/- 0.01

All the float format specifications are accepted, except those with the n format type. In particular, a fill character, an
alignment option, a sign or zero option, a width, or the % format type are all supported.

The usual float formats with a precision retain their original meaning (e.g. .2e uses two digits after the decimal
point): code that works with floats produces similar results when running with numbers with uncertainties.

Precision control

It is possible to control the number of significant digits of the uncertainty by adding the precision modifier u after
the precision (and before any valid float format type like f, e, the empty format type, etc.):

>>> print('1 significant digit on the uncertainty: {:.1u}'.format(x))
1 significant digit on the uncertainty: 0.20+/-0.01
>>> print('3 significant digits on the uncertainty: {:.3u}'.format(x))
3 significant digits on the uncertainty: 0.2000+/-0.0100
>>> print('1 significant digit, exponent notation: {:.1ue}'.format(x))
1 significant digit, exponent notation: (2.0+/-0.1)e-01
>>> print('1 significant digit, percentage: {:.1u%}'.format(x))
1 significant digit, percentage: (20+/-1)%

When uncertainties must choose the number of significant digits on the uncertainty, it uses the Particle Data
Group rounding rules (these rules keep the number of digits small, which is convenient for reading numbers with
uncertainties, and at the same time prevent the uncertainty from being displayed with too few digits):

>>> print('Automatic number of digits on the uncertainty: {}'.format(x))
Automatic number of digits on the uncertainty: 0.200+/-0.010
>>> print(x)
0.200+/-0.010

Custom options

uncertainties provides even more flexibility through custom formatting options. They can be added at the end of
the format string:

• P for pretty-printing:

>>> print('{:.2e}'.format(x))
(2.00+/-0.10)e-01
>>> print(u'{:.2eP}'.format(x))
(2.00±0.10)×10−1

The pretty-printing mode thus uses “±”, “×” and superscript exponents.

• S for the shorthand notation:

>>> print('{:+.1uS}'.format(x)) # Sign, 1 digit for the uncertainty, shorthand
+0.20(1)
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In this notation, the digits in parentheses represent the uncertainty on the last digits of the nominal value.

• L for a LaTeX output:

>>> print(x*1e7)
(2.00+/-0.10)e+06
>>> print('{:L}'.format(x*1e7)) # Automatic exponent form, LaTeX
\left(2.00 \pm 0.10\right) \times 10^{6}

• p is for requiring that parentheses be always printed around the . . .±. . . part (without enclosing any exponent or
trailing “%”, etc.). This can for instance be useful so as to explicitly factor physical units:

>>> print('{:p} kg'.format(x)) # Adds parentheses
(0.200+/-0.010) kg
>>> print("{:p} kg".format(x*1e7)) # No parentheses added (exponent)
(2.00+/-0.10)e+06 kg

These custom formatting options can be combined (when meaningful).

Details

A common exponent is automatically calculated if an exponent is needed for the larger of the nominal value (in absolute
value) and the uncertainty (the rule is the same as for floats). The exponent is generally factored, for increased legibility:

>>> print(x*1e7)
(2.00+/-0.10)e+06

When a format width is used, the common exponent is not factored:

>>> print('Result = {:10.1e}'.format(x*1e-10))
Result = 2.0e-11+/- 0.1e-11

(Using a (minimal) width of 1 is thus a way of forcing exponents to not be factored.) Thanks to this feature, each part
(nominal value and standard deviation) is correctly aligned across multiple lines, while the relative magnitude of the
error can still be readily estimated thanks to the common exponent.

An uncertainty which is exactly zero is always formatted as an integer:

>>> print(ufloat(3.1415, 0))
3.1415+/-0
>>> print(ufloat(3.1415e10, 0))
(3.1415+/-0)e+10
>>> print(ufloat(3.1415, 0.0005))
3.1415+/-0.0005
>>> print('{:.2f}'.format(ufloat(3.14, 0.001)))
3.14+/-0.00
>>> print('{:.2f}'.format(ufloat(3.14, 0.00)))
3.14+/-0

All the digits of a number with uncertainty are given in its representation:

>>> y = ufloat(1.23456789012345, 0.123456789)
>>> print(y)
1.23+/-0.12
>>> print(repr(y))

(continues on next page)
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(continued from previous page)

1.23456789012345+/-0.123456789
>>> y
1.23456789012345+/-0.123456789

Global formatting

It is sometimes useful to have a consistent formatting across multiple parts of a program. Python’s string.Formatter
class allows one to do just that. Here is how it can be used to consistently use the shorthand notation for numbers with
uncertainties:

class ShorthandFormatter(string.Formatter):

def format_field(self, value, format_spec):
if isinstance(value, uncertainties.UFloat):

return value.format(format_spec+'S') # Shorthand option added
# Special formatting for other types can be added here (floats, etc.)
else:

# Usual formatting:
return super(ShorthandFormatter, self).format_field(

value, format_spec)

frmtr = ShorthandFormatter()

print(frmtr.format("Result = {0:.1u}", x)) # 1-digit uncertainty

prints with the shorthand notation: Result = 0.20(1).

Customizing the pretty-print and LaTeX outputs

The pretty print and LaTeX outputs themselves can be customized.

For example, the pretty-print representation of numbers with uncertainty can display multiplication with a centered
dot (·) instead of the default symbol (×), like in (2.00±0.10)·10−1; this is easily done through the global setting
uncertainties.core.MULT_SYMBOLS["pretty-print"] = "·".

Beyond this multiplication symbol, the “±” symbol, the parentheses and the exponent representations can also be
customized globally. The details can be found in the documentation of uncertainties.core.format_num().

1.5 Advanced Topics

This page gives more in-depth technical description of the uncertainties package.
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1.5.1 API: Application Programming Interface

The most common and important functions for creating uncertain Variables are ufloat() and ufloat_fromstr().
In addition, the wrap() can be used to support the propagation of uncertainties with a user-supplied function.

uncertainties.ufloat(nominal_value, std_dev=None, tag=None)
Create an uncertainties Variable

Arguments:

nominal_value: float
nominal value of Variable

std_dev: float or None
standard error of Variable, or None if not available [None]

tag: string or None
optional tag for tracing and organizing Variables [‘None’]

Returns:

uncertainties Variable

Examples

>>> a = ufloat(5, 0.2)
>>> b = ufloat(1000, 30, tag='kilo')

Notes:

1. nominal_value is typically interpreted as mean or central value

2. std_dev is typically interpreted as standard deviation or the
1-sigma level uncertainty.

3. The returned Variable will have attributes nominal_value, std_dev, and tag which match the input values.

uncertainties.ufloat_fromstr(representation, tag=None)
Create an uncertainties Variable from a string representation. Several representation formats are supported.

Arguments:

representation: string
string representation of a value with uncertainty

tag: string or None
optional tag for tracing and organizing Variables [‘None’]
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Returns:

uncertainties Variable.

Notes:

1. Invalid representations raise a ValueError.

2. Using the form “nominal(std)” where “std” is an integer creates a Variable with “std” giving the least
significant digit(s). That is, “1.25(3)” is the same as ufloat(1.25, 0.03), while “1.25(3.)” is the same as
ufloat(1.25, 3.)

Examples:

>>> x = ufloat_fromsstr("12.58+/-0.23") # = ufloat(12.58, 0.23)
>>> x = ufloat_fromsstr("12.58 ± 0.23") # = ufloat(12.58, 0.23)
>>> x = ufloat_fromsstr("3.85e5 +/- 2.3e4") # = ufloat(3.8e5, 2.3e4)
>>> x = ufloat_fromsstr("(38.5 +/- 2.3)e4") # = ufloat(3.8e5, 2.3e4)

>>> x = ufloat_fromsstr("72.1(2.2)") # = ufloat(72.1, 2.2)
>>> x = ufloat_fromsstr("72.15(4)") # = ufloat(72.15, 0.04)
>>> x = ufloat_fromstr("680(41)e-3") # = ufloat(0.68, 0.041)
>>> x = ufloat_fromstr("23.2") # = ufloat(23.2, 0.1)
>>> x = ufloat_fromstr("23.29") # = ufloat(23.29, 0.01)

>>> x = ufloat_fromstr("680.3(nan)") # = ufloat(680.3, numpy.nan)

class uncertainties.Variable(value, std_dev, tag=None)
Representation of a float-like scalar Variable with its uncertainty.

Variables are independent from each other, but correlations between them are handled through the AffineScalar-
Func class.

uncertainties.wrap(f , derivatives_args=None, derivatives_kwargs=None)
Wrap a function f into one that accepts Variables.

The function f must return a float or integer value. The returned wrapped function will return values with both
uncertainties and correlations, but can be used as a drop-in replacement for the original function.

Arguments:

derivatives_args: list or iterable
list or tupleof derivative functionss or None with respect to the positional arguments of f. See Note 1.

derivatives_kwargs: dictionary
dict of derivative functionss or None with respect to the keyword arguments of f. See Note 1.
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Notes:

1. Each function must be the partial derivative of f with respect to the corresponding positional parameters,
and must have the same signature as f. derivative_args hold derivitative functions for positional arguments
(include *varargs), while derivative_kwargs holds derivitative functions for keyword arguments (include
**kwargs). If an entry is None or not supplied, and if the argument value isa numeric Variable, a numerical
derivative will be used. Non-numeric are ignored.

2. If derivatives are meaningless or the function is not function is not differentiable, the derivative funcion
should return NaN for values for which the the function is not differentiable.

Example:

To wrap sin, one could do

>>> from uncertainties import wrap, umath
>>> import math
>>> usin_a = wrap(math.sin) # uses numerical derivative
>>> usin_b = wrap(math.sin, [math.cos]) # use analytic derivative
>>> usin_c = umath.sin # builtin, same as usin_2

These will all give the same result.

Testing whether an object is a number with uncertainty

The recommended way of testing whether value carries an uncertainty handled by this module is by checking whether
value is an instance of UFloat, through isinstance(value, uncertainties.UFloat).

1.5.2 Special Technical Topics

Pickling

The quantities with uncertainties created by the uncertainties package can be pickled (they can be stored in a file,
for instance).

If multiple variables are pickled together (including when pickling NumPy arrays), their correlations are preserved:

>>> import pickle
>>> x = ufloat(2, 0.1)
>>> y = 2*x
>>> p = pickle.dumps([x, y]) # Pickling to a string
>>> (x2, y2) = pickle.loads(p) # Unpickling into new variables
>>> y2 - 2*x2
0.0+/-0

The final result is exactly zero because the unpickled variables x2 and y2 are completely correlated.

However, unpickling necessarily creates new variables that bear no relationship with the original variables (in
fact, the pickled representation can be stored in a file and read from another program after the program that did the
pickling is finished: the unpickled variables cannot be correlated to variables that can disappear). Thus

>>> x - x2
0.0+/-0.14142135623730953
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which shows that the original variable x and the new variable x2 are completely uncorrelated.

Comparison operators

Comparison operations (>, ==, etc.) on numbers with uncertainties have a pragmatic semantics, in this package:
numbers with uncertainties can be used wherever Python numbers are used, most of the time with a result identical to
the one that would be obtained with their nominal value only. This allows code that runs with pure numbers to also
work with numbers with uncertainties.

The boolean value (bool(x), if x ...) of a number with uncertainty x is defined as the result of x != 0, as usual.

However, since the objects defined in this module represent probability distributions and not pure numbers, comparison
operators are interpreted in a specific way.

The result of a comparison operation is defined so as to be essentially consistent with the requirement that uncertainties
be small: the value of a comparison operation is True only if the operation yields True for all infinitesimal variations
of its random variables around their nominal values, except, possibly, for an infinitely small number of cases.

Example:

>>> x = ufloat(3.14, 0.01)
>>> x == x
True

because a sample from the probability distribution of x is always equal to itself. However:

>>> y = ufloat(3.14, 0.01)
>>> x == y
False

since x and y are independent random variables that almost always give a different value (put differently, x-y is not
equal to 0, as it can take many different values). Note that this is different from the result of z = 3.14; t = 3.14;
print(z == t), because x and y are random variables, not pure numbers.

Similarly,

>>> x = ufloat(3.14, 0.01)
>>> y = ufloat(3.00, 0.01)
>>> x > y
True

because x is supposed to have a probability distribution largely contained in the 3.14±~0.01 interval, while y is sup-
posed to be well in the 3.00±~0.01 one: random samples of x and y will most of the time be such that the sample from
x is larger than the sample from y. Therefore, it is natural to consider that for all practical purposes, x > y.

Since comparison operations are subject to the same constraints as other operations, as required by the linear approx-
imation method, their result should be essentially constant over the regions of highest probability of their variables
(this is the equivalent of the linearity of a real function, for boolean values). Thus, it is not meaningful to compare the
following two independent variables, whose probability distributions overlap:

>>> x = ufloat(3, 0.01)
>>> y = ufloat(3.0001, 0.01)

In fact the function (x, y)→ (x > y) is not even continuous over the region where x and y are concentrated, which violates
the assumption of approximate linearity made in this package on operations involving numbers with uncertainties.
Comparing such numbers therefore returns a boolean result whose meaning is undefined.

However, values with largely overlapping probability distributions can sometimes be compared unambiguously:
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>>> x = ufloat(3, 1)
>>> x
3.0+/-1.0
>>> y = x + 0.0002
>>> y
3.0002+/-1.0
>>> y > x
True

In fact, correlations guarantee that y is always larger than x: y-x correctly satisfies the assumption of linearity, since it
is a constant “random” function (with value 0.0002, even though y and x are random). Thus, it is indeed true that y >
x.

Linear propagation of uncertainties

This package calculates the standard deviation of mathematical expressions through the linear approximation of error
propagation theory.

The standard deviations and nominal values calculated by this package are thus meaningful approximations as long
as uncertainties are “small”. A more precise version of this constraint is that the final calculated functions must
have precise linear expansions in the region where the probability distribution of their variables is the largest.
Mathematically, this means that the linear terms of the final calculated functions around the nominal values of their
variables should be much larger than the remaining higher-order terms over the region of significant probability (because
such higher-order contributions are neglected).

For example, calculating x*10 with x = 5±3 gives a perfect result since the calculated function is linear. So does
umath.atan(umath.tan(x)) for x = 0±1, since only the final function counts (not an intermediate function like
tan()).

Another example is sin(0+/-0.01), for which uncertainties yields a meaningful standard deviation since the sine
is quite linear over 0±0.01. However, cos(0+/-0.01), yields an approximate standard deviation of 0 because it is
parabolic around 0 instead of linear; this might not be precise enough for all applications.

More precise uncertainty estimates can be obtained, if necessary, with the soerp and mcerp packages. The soerp
package performs second-order error propagation: this is still quite fast, but the standard deviation of higher-order
functions like f(x) = x3 for x = 0±0.1 is calculated as being exactly zero (as with uncertainties). The mcerp
package performs Monte-Carlo calculations, and can in principle yield very precise results, but calculations are much
slower than with approximation schemes.

NaN uncertainty

If linear error propagation theory cannot be applied, the functions defined by uncertainties internally use a not-a-
number value (nan) for the derivative.

As a consequence, it is possible for uncertainties to be nan:

>>> umath.sqrt(ufloat(0, 1))
0.0+/-nan

This indicates that the derivative required by linear error propagation theory is not defined (a Monte-Carlo cal-
culation of the resulting random variable is more adapted to this specific case).

However, even in this case where the derivative at the nominal value is infinite, the uncertainties package correctly
handles perfectly precise numbers:
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>>> umath.sqrt(ufloat(0, 0))
0.0+/-0

is thus the correct result, despite the fact that the derivative of the square root is not defined in zero.

Mathematical definition of numbers with uncertainties

Mathematically, numbers with uncertainties are, in this package, probability distributions. They are not restricted
to normal (Gaussian) distributions and can be any distribution. These probability distributions are reduced to two
numbers: a nominal value and an uncertainty.

Thus, both independent variables (Variable objects) and the result of mathematical operations (AffineScalarFunc
objects) contain these two values (respectively in their nominal_value and std_dev attributes).

The uncertainty of a number with uncertainty is simply defined in this package as the standard deviation of the
underlying probability distribution.

The numbers with uncertainties manipulated by this package are assumed to have a probability distribution mostly
contained around their nominal value, in an interval of about the size of their standard deviation. This should cover
most practical cases.

A good choice of nominal value for a number with uncertainty is thus the median of its probability distribution, the
location of highest probability, or the average value.

Probability distributions (random variables and calculation results) are printed as:

nominal value +/- standard deviation

but this does not imply any property on the nominal value (beyond the fact that the nominal value is normally inside
the region of high probability density), or that the probability distribution of the result is symmetrical (this is rarely
strictly the case).

Differentiation method

The uncertainties package automatically calculates the derivatives required by linear error propagation theory.

Almost all the derivatives of the fundamental functions provided by uncertainties are obtained through analytical
formulas (the few mathematical functions that are instead differentiated through numerical approximation are listed in
umath_core.num_deriv_funcs).

The derivatives of mathematical expressions are evaluated through a fast and precise method: uncertainties trans-
parently implements automatic differentiation with reverse accumulation. This method essentially consists in keeping
track of the value of derivatives, and in automatically applying the chain rule. Automatic differentiation is faster than
symbolic differentiation and more precise than numerical differentiation.

The derivatives of any expression can be obtained with uncertainties in a simple way, as demonstrated in the User
Guide.
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Tracking of random variables

This package keeps track of all the random variables a quantity depends on, which allows one to perform transparent
calculations that yield correct uncertainties. For example:

>>> x = ufloat(2, 0.1)
>>> a = 42
>>> poly = x**2 + a
>>> poly
46.0+/-0.4
>>> poly - x*x
42+/-0

Even though x*x has a non-zero uncertainty, the result has a zero uncertainty, because it is equal to a.

If the variable a above is modified, the value of poly is not modified, as is usual in Python:

>>> a = 123
>>> print(poly)
46.0+/-0.4 # Still equal to x**2 + 42, not x**2 + 123

Random variables can, on the other hand, have their uncertainty updated on the fly, because quantities with uncertainties
(like poly) keep track of them:

>>> x.std_dev = 0
>>> print(poly)
46+/-0 # Zero uncertainty, now

As usual, Python keeps track of objects as long as they are used. Thus, redefining the value of x does not change the
fact that poly depends on the quantity with uncertainty previously stored in x:

>>> x = 10000
>>> print(poly)
46+/-0 # Unchanged

These mechanisms make quantities with uncertainties behave mostly like regular numbers, while providing a fully
transparent way of handling correlations between quantities.

Python classes for variables and functions with uncertainty

Numbers with uncertainties are represented through two different classes:

1. a class for independent random variables (Variable, which inherits from UFloat),

2. a class for functions that depend on independent variables (AffineScalarFunc, aliased as UFloat).

Additional documentation for these classes is available in their Python docstring.

The factory function ufloat() creates variables and thus returns a Variable object:

>>> x = ufloat(1, 0.1)
>>> type(x)
<class 'uncertainties.Variable'>

Variable objects can be used as if they were regular Python numbers (the summation, etc. of these objects is defined).
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Mathematical expressions involving numbers with uncertainties generally return AffineScalarFunc objects, because
they represent mathematical functions and not simple variables; these objects store all the variables they depend on:

>>> type(umath.sin(x))
<class 'uncertainties.AffineScalarFunc'>
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