13.6 Fit Specifying Different Reduce Function ... 155
13.7 Building a lmfit model with SymPy .. 158
13.8 Fit with Algebraic Constraint ... 162
13.9 Fit Multiple Data Sets ... 164
13.10 Fit Specifying a Function to Compute the Jacobian .. 167
13.11 Fit using the Model interface ... 169
13.12 Outlier detection via leave-one-out ... 175
13.13 Emcee and the Model Interface ... 180
13.14 Calculate Confidence Intervals ... 186
13.15 Complex Resonator Model ... 191
13.16 Model Selection using lmfit and emcee ... 195
13.17 Fit Two Dimensional Peaks ... 198
13.18 Global minimization using the brute method (a.k.a. grid search) 205

14 Examples from the documentation ... 219
14.1 doc_model_savemodel.py ... 219
14.2 doc_model_loadmodelresult.py ... 220
14.3 doc_model_loadmodelresult2.py .. 222
14.4 doc_model_savemodelresult.py ... 224
14.5 doc_confidence_basic.py ... 225
14.6 doc_model_loadmodel.py ... 226
14.7 doc_model_gaussian.py ... 228
14.8 doc_model_with_nan_policy.py .. 230
14.9 doc_builtinmodels_stepmodel.py ... 232
14.10 doc_model_two_components.py ... 234
14.11 doc_model_uncertainty.py .. 236
14.12 doc_model_savemodelresult2.py ... 237
14.13 doc_model_with_iter_callback.py ... 240
14.14 doc_builtinmodels_nistgauss2.py .. 245
14.15 doc_fitting_withreport.py .. 247
14.16 doc_parameters_valuesdict.py ... 249
14.17 doc_parameters_basic.py ... 251
14.18 doc_builtinmodels_peakmodels.py .. 253
14.19 doc_builtinmodels_nistgauss.py .. 257
14.20 doc_model_composite.py .. 259
14.21 doc_confidence_advanced.py .. 261
14.22 doc_fitting_emcee.py ... 264

Python Module Index ... 271

Index .. 273
Lmfit provides a high-level interface to non-linear optimization and curve fitting problems for Python. It builds on and extends many of the optimization methods of scipy.optimize. Initially inspired by (and named for) extending the Levenberg-Marquardt method from scipy.optimize.leastsq, Lmfit now provides a number of useful enhancements to optimization and data fitting problems, including:

- Using Parameter objects instead of plain floats as variables. A Parameter has a value that can be varied during the fit or kept at a fixed value. It can have upper and/or lower bounds. A Parameter can even have a value that is constrained by an algebraic expression of other Parameter values. As a Python object, a Parameter can also have attributes such as a standard error, after a fit that can estimate uncertainties.

- Ease of changing fitting algorithms. Once a fitting model is set up, one can change the fitting algorithm used to find the optimal solution without changing the objective function.

- Improved estimation of confidence intervals. While scipy.optimize.leastsq will automatically calculate uncertainties and correlations from the covariance matrix, the accuracy of these estimates is sometimes questionable. To help address this, Lmfit has functions to explicitly explore parameter space and determine confidence levels even for the most difficult cases. Additionally, Lmfit will use the numdifftools package (if installed) to estimate parameter uncertainties and correlations for algorithms that do not natively support this in SciPy.

- Improved curve-fitting with the Model class. This extends the capabilities of scipy.optimize.curve_fit, allowing you to turn a function that models your data into a Python class that helps you parametrize and fit data with that model.

- Many built-in models for common lineshapes are included and ready to use.

The Lmfit package is Free software, using an Open Source license. The software and this document are works in progress. If you are interested in participating in this effort please use the Lmfit GitHub repository.
GETTING STARTED WITH NON-LINEAR LEAST-SQUARES FITTING

The lmfit package provides simple tools to help you build complex fitting models for non-linear least-squares problems and apply these models to real data. This section gives an overview of the concepts and describes how to set up and perform simple fits. Some basic knowledge of Python, NumPy, and modeling data are assumed – this is not a tutorial on why or how to perform a minimization or fit data, but is rather aimed at explaining how to use lmfit to do these things.

In order to do a non-linear least-squares fit of a model to data or for any other optimization problem, the main task is to write an **objective function** that takes the values of the fitting variables and calculates either a scalar value to be minimized or an array of values that are to be minimized, typically in the least-squares sense. For many data fitting processes, the latter approach is used, and the objective function should return an array of \((data-model)\), perhaps scaled by some weighting factor such as the inverse of the uncertainty in the data. For such a problem, the chi-square \((\chi^2)\) statistic is often defined as:

\[
\chi^2 = \sum_i \frac{(y_{\text{meas}}^i - y_{\text{model}}^i(v))^2}{\epsilon_i^2}
\]

where \(y_{\text{meas}}^i\) is the set of measured data, \(y_{\text{model}}^i(v)\) is the model calculation, \(v\) is the set of variables in the model to be optimized in the fit, and \(\epsilon_i\) is the estimated uncertainty in the data, respectively.

In a traditional non-linear fit, one writes an objective function that takes the variable values and calculates the residual array \(y_{\text{meas}}^i - y_{\text{model}}^i(v)\), or the residual array scaled by the data uncertainties, \([y_{\text{meas}}^i - y_{\text{model}}^i(v)]/\epsilon_i\), or some other weighting factor.

As a simple concrete example, one might want to model data with a decaying sine wave, and so write an objective function like this:

```python
from numpy import exp, sin

def residual(variables, x, data, eps_data):
    """Model a decaying sine wave and subtract data."
    amp = variables[0]
    phaseshift = variables[1]
    freq = variables[2]
    decay = variables[3]
    model = amp * sin(x*freq + phaseshift) * exp(-x*x*decay)
    return (data-model) / eps_data
```

To perform the minimization with scipy.optimize, one would do this:

```python
from numpy import linspace, random
from scipy.optimize import leastsq
```

(continues on next page)
generate synthetic data with noise
x = linspace(0, 100)
eps_data = random.normal(size=x.size, scale=0.2)
data = 7.5 * sin(x*0.22 + 2.5) * exp(-x*x*0.01) + eps_data

variables = [10.0, 0.2, 3.0, 0.007]
out = leastsq(residual, variables, args=(x, data, eps_data))

Though it is wonderful to be able to use Python for such optimization problems, and the SciPy library is robust and easy to use, the approach here is not terribly different from how one would do the same fit in C or Fortran. There are several practical challenges to using this approach, including:

a) The user has to keep track of the order of the variables, and their meaning – variables[0] is the amplitude, variables[2] is the frequency, and so on, although there is no intrinsic meaning to this order.

b) If the user wants to fix a particular variable (not vary it in the fit), the residual function has to be altered to have fewer variables, and have the corresponding constant value passed in some other way. While reasonable for simple cases, this quickly becomes a significant work for more complex models, and greatly complicates modeling for people not intimately familiar with the details of the fitting code.

c) There is no simple, robust way to put bounds on values for the variables, or enforce mathematical relationships between the variables. In fact, the optimization methods that do provide bounds, require bounds to be set for all variables with separate arrays that are in the same arbitrary order as variable values. Again, this is acceptable for small or one-off cases, but becomes painful if the fitting model needs to change.

These shortcomings are due to the use of traditional arrays to hold the variables, which matches closely the implementation of the underlying Fortran code, but does not fit very well with Python’s rich selection of objects and data structures. The key concept in Lmfit is to define and use Parameter objects instead of plain floating point numbers as the variables for the fit. Using Parameter objects (or the closely related Parameters – a dictionary of Parameter objects), allows one to:

a) forget about the order of variables and refer to Parameters by meaningful names.

b) place bounds on Parameters as attributes, without worrying about preserving the order of arrays for variables and boundaries.

c) fix Parameters, without having to rewrite the objective function.

d) place algebraic constraints on Parameters.

To illustrate the value of this approach, we can rewrite the above example for the decaying sine wave as:

```python
from numpy import exp, sin
from lmfit import minimize, Parameters

def residual(params, x, data, eps_data):
    amp = params['amp']
    phaseshift = params['phase']
    freq = params['frequency']
    decay = params['decay']

    model = amp * sin(x*freq + phaseshift) * exp(-x*x*decay)

    return (data-model) / eps_data
```

(continues on next page)
At first look, we simply replaced a list of values with a dictionary, accessed by name — not a huge improvement. But each of the named Parameter in the Parameters object holds additional attributes to modify the value during the fit. For example, Parameters can be fixed or bounded. This can be done during definition:

```python
params = Parameters()
params.add('amp', value=10, vary=False)
params.add('decay', value=0.007, min=0.0)
params.add('phase', value=0.2)
params.add('frequency', value=3.0, max=10)
```

where `vary=False` will prevent the value from changing in the fit, and `min=0.0` will set a lower bound on that parameter’s value. It can also be done later by setting the corresponding attributes after they have been created:

```python
params['amp'].vary = False
params['decay'].min = 0.10
```

Importantly, our objective function remains unchanged. This means the objective function can simply express the parameterized phenomenon to be modeled, and is separate from the choice of parameters to be varied in the fit.

The params object can be copied and modified to make many user-level changes to the model and fitting process. Of course, most of the information about how your data is modeled goes into the objective function, but the approach here allows some external control; that is, control by the user performing the fit, instead of by the author of the objective function.

Finally, in addition to the Parameters approach to fitting data, lmfit allows switching optimization methods without changing the objective function, provides tools for generating fitting reports, and provides a better determination of Parameters confidence levels.
CHAPTER TWO

DOWNLOADING AND INSTALLATION

2.1 Prerequisites

Lmfit works with Python versions 3.6 and higher. Version 0.9.15 is the final version to support Python 2.7.

Lmfit requires the following Python packages, with versions given:

- NumPy version 1.18 or higher.
- SciPy version 1.3 or higher.
- asteval version 0.9.21 or higher.
- uncertainties version 3.0.1 or higher.

All of these are readily available on PyPI, and should be installed automatically if installing with pip install lmfit.

In order to run the test suite, the pytest package is required. Some functionality requires the emcee (version 3+), corner, pandas, Jupyter, matplotlib, dill, or numdifftools packages. These are not installed automatically, but we highly recommend each of these packages.

For building the documentation and generating the examples gallery, matplotlib, emcee (version 3+), corner, Sphinx, jupyter_sphinx, Pillow, sphinxcontrib-svgs2pdfconverter, and cairosvg are required (the latter two only when generating the PDF document).

Please refer to requirements-dev.txt for a list of all dependencies that are needed if you want to participate in the development of Lmfit.

2.2 Downloads

The latest stable version of Lmfit is 1.0.2 and is available from PyPI. Check the Release Notes for a list of changes compared to earlier releases.
2.3 Installation

The easiest way to install lmfit is with:

```
pip install lmfit
```

For Anaconda Python, lmfit is not an official package, but several Anaconda channels provide it, allowing installation with (for example):

```
conda install -c conda-forge lmfit
```

2.4 Development Version

To get the latest development version from the lmfit GitHub repository, use:

```
git clone https://github.com/lmfit/lmfit-py.git
```

and install using:

```
python setup.py install
```

We welcome all contributions to lmfit! If you cloned the repository for this purpose, please read CONTRIBUTING.md for more detailed instructions.

2.5 Testing

A battery of tests scripts that can be run with the pytest testing framework is distributed with lmfit in the tests folder. These are automatically run as part of the development process. For any release or any master branch from the git repository, running pytest should run all of these tests to completion without errors or failures.

Many of the examples in this documentation are distributed with lmfit in the examples folder, and should also run for you. Some of these examples assume that matplotlib has been installed and is working correctly.

2.6 Acknowledgements

Many people have contributed to lmfit. The attribution of credit in a project such as this is difficult to get perfect, and there are no doubt important contributions that are missing or under-represented here. Please consider this file as part of the code and documentation that may have bugs that need fixing.

Some of the largest and most important contributions (in approximate order of size of the contribution to the existing code) are from:

Matthew Newville wrote the original version and maintains the project.

Renee Otten wrote the brute force method, implemented the basin-hopping and AMPGO global solvers, implemented uncertainty calculations for scalar minimizers and has greatly improved the code, testing, and documentation and overall project.
Till Stensitzki wrote the improved estimates of confidence intervals, and contributed many tests, bug fixes, and documentation.

A. R. J. Nelson added differential_evolution, emcee, and greatly improved the code, docstrings, and overall project.

Antonino Ingargiola wrote much of the high level Model code and has provided many bug fixes and improvements.

Daniel B. Allan wrote much of the original version of the high level Model code, and many improvements to the testing and documentation.

Austen Fox fixed many of the built-in model functions and improved the testing and documentation of these.

Michal Rawlik added plotting capabilities for Models.

The method used for placing bounds on parameters was derived from the clear description in the MINUIT documentation, and adapted from J. J. Helmus's python implementation in leastsqbounds.py.

E. O. Le Bigot wrote the uncertainties package, a version of which was used by lmfit for many years, and is now an external dependency.

The original AMPGO code came from Andrea Gavana and was adopted for lmfit.

The propagation of parameter uncertainties to uncertainties in a Model was adapted from the excellent description at https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html#confidence-and-prediction-intervals, which references the original work of: J. Wolberg, Data Analysis Using the Method of Least Squares, 2006, Springer.

Additional patches, bug fixes, and suggestions have come from Faustin Carter, Christoph Deil, Francois Boulogne, Thomas Caswell, Colin Brosseau, nmearl, Gustavo Pasquevich, Clemens Prescher, LiCode, Ben Gamari, Yoav Roam, Alexander Stark, Alexandre Beelen, Andrey Aristov, Nicholas Zobrist, Ethan Welty, Julius Zimmermann, Mark Dean, Arun Persaud, Ray Osborn, @lneuhaus, Marcel Stimberg, Yoshiera Huang, Leon Foks, Sebastian Weigand, Florian LB, Michael Hudson-Doyle, Ruben Verweij, @jedzill4, and many others.

The lmfit code obviously depends on, and owes a very large debt to the code in scipy.optimize. Several discussions on the SciPy-user and lmfit mailing lists have also led to improvements in this code.
2.7 Copyright, Licensing, and Re-distribution

The LMFIT-py code is distributed under the following license:

BSD-3

Copyright 2021 Matthew Newville, The University of Chicago
Renee Otten, Brandeis University
Till Stensitzki, Freie Universitat Berlin
A. R. J. Nelson, Australian Nuclear Science and Technology Organisation
Antonino Ingargiola, University of California, Los Angeles
Daniel B. Allen, Johns Hopkins University
Michal Rawlik, Eidgenossische Technische Hochschule, Zurich

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Some code has been taken from the scipy library whose licence is below.

Copyright (c) 2001, 2002 Enthought, Inc.
All rights reserved.

Copyright (c) 2003-2019 SciPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

(continues on next page)
c. Neither the name of Enthought nor the names of the SciPy Developers may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holders or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Some code has been taken from the AMPGO library of Andrea Gavana, which was released under a MIT license.
If you have questions, comments, or suggestions for LMFIT, please use the mailing list. This provides an on-line conversation that is both archived well and can be searched easily with standard web searches. If you find a bug in the code or documentation, use GitHub Issues to submit a report. If you have an idea for how to solve the problem and are familiar with Python and GitHub, submitting a GitHub Pull Request would be greatly appreciated.

If you are unsure whether to use the mailing list or the Issue tracker, please start a conversation on the mailing list. That is, the problem you’re having may or may not be due to a bug. If it is due to a bug, creating an Issue from the conversation is easy. If it is not a bug, the problem will be discussed and then the Issue will be closed. While one can search through closed Issues on GitHub, these are not so easily searched, and the conversation is not easily useful to others later. Starting the conversation on the mailing list with “How do I do this?” or “Why didn’t this work?” instead of “This should work and doesn’t” is generally preferred, and will better help others with similar questions. Of course, there is not always an obvious way to decide if something is a Question or an Issue, and we will try our best to engage in all discussions.
FREQUENTLY ASKED QUESTIONS

A list of common questions.

4.1 What’s the best way to ask for help or submit a bug report?

See *Getting Help*.

4.2 Why did my script break when upgrading from lmfit 0.8.3 to 0.9.0?

See *Version 0.9.0 Release Notes*.

4.3 I get import errors from IPython

If you see something like:

```python
from IPython.html.widgets import Dropdown
ImportError: No module named 'widgets'
```

then you need to install the `ipywidgets` package, try: `pip install ipywidgets`.

4.4 How can I fit multi-dimensional data?

The fitting routines accept data arrays that are one-dimensional and double precision. So you need to convert the data and model (or the value returned by the objective function) to be one-dimensional. A simple way to do this is to use `numpy.ndarray.flatten`, for example:

```python
def residual(params, x, data=None):
    ....
    resid = calculate_multidim_residual()
    return resid.flatten()
```
4.5 How can I fit multiple data sets?

As above, the fitting routines accept data arrays that are one-dimensional and double precision. So you need to convert the sets of data and models (or the value returned by the objective function) to be one-dimensional. A simple way to do this is to use `numpy.concatenate`. As an example, here is a residual function to simultaneously fit two lines to two different arrays. As a bonus, the two lines share the ‘offset’ parameter:

```python
import numpy as np

def fit_function(params, x=None, dat1=None, dat2=None):
    model1 = params['offset'] + x * params['slope1']
    model2 = params['offset'] + x * params['slope2']

    resid1 = dat1 - model1
    resid2 = dat2 - model2
    return np.concatenate((resid1, resid2))
```

4.6 How can I fit complex data?

As with working with multi-dimensional data, you need to convert your data and model (or the value returned by the objective function) to be double precision, floating point numbers. The simplest approach is to use `numpy.ndarray.view`, perhaps like:

```python
import numpy as np

def residual(params, x, data=None):
    ....
    resid = calculate_complex_residual()
    return resid.view(float)
```

Alternately, you can use the `lmfit.Model` class to wrap a fit function that returns a complex vector. It will automatically apply the above prescription when calculating the residual. The benefit to this method is that you also get access to the plot routines from the `ModelResult` class, which are also complex-aware.

4.7 How should I cite LMFIT?

See https://dx.doi.org/10.5281/zenodo.11813

4.8 I get errors from NaN in my fit. What can I do?

The solvers used by LMFit use NaN (see https://en.wikipedia.org/wiki.NaN) values as signals that the calculation cannot continue. If any value in the residual array (typically \((\text{data-model}) \times \text{weight}\)) is NaN, then calculations of chi-square or comparisons with other residual arrays to try find a better fit will also give NaN and fail. There is no sensible way for LMFit or any of the optimization routines to know how to handle such NaN values. They indicate that numerical calculations are not sensible and must stop.

This means that if your objective function (if using `minimize`) or model function (if using `Model`) generates a NaN, the fit will stop immediately. If your objective or model function generates a NaN, you really must handle that.
4.8.1 nan_policy

If you are using `lmfit.Model` and the NaN values come from your data array and are meant to indicate missing values, or if you are using `lmfit.minimize()` with the same basic intention, then it might be possible to get a successful fit in spite of the NaN values. To do this, you can add a `nan_policy='omit'` argument to `lmfit.minimize()`, or when creating a `lmfit.Model`, or when running `lmfit.Model.fit()`.

In order for this to be effective, the number of NaN values cannot ever change during the fit. If the NaN values come from the data and not the calculated model, that should be the case.

4.8.2 Common sources of NaN

If you are seeing errors due to NaN values, you will need to figure out where they are coming from and eliminate them. It is sometimes difficult to tell what causes NaN values. Keep in mind that all values should be assumed to be either scalar values or numpy arrays of double precision real numbers when fitting. Some of the most likely causes of NaNs are:

- taking \sqrt{x} or $\log(x)$ where x is negative.
- doing x^{y} where x is negative. Since y is real, there will be a fractional component, and a negative number to a fractional exponent is not a real number.
- doing x/y where both x and y are 0.

If you use these very common constructs in your objective or model function, you should take some caution for what values you are passing these functions and operators. Many special functions have similar limitations and should also be viewed with some suspicion if NaNs are being generated.

A related problem is the generation of Inf (Infinity in floating point), which generally comes from $\exp(x)$ where x has values greater than 700 or so, so that the resulting value is greater than 1.e308. Inf is only slightly better than NaN. It will completely ruin the ability to do the fit. However, unlike NaN, it is also usually clear how to handle Inf, as you probably won’t ever have values greater than 1.e308 and can therefore (usually) safely clip the argument passed to $\exp()$ to be smaller than about 700.

4.9 Why are Parameter values sometimes stuck at initial values?

In order for a Parameter to be optimized in a fit, changing its value must have an impact on the fit residual (data-model when curve fitting, for example). If a fit has not changed one or more of the Parameters, it means that changing those Parameters did not change the fit residual.

Normally (that is, unless you specifically provide a function for calculating the derivatives, in which case you probably would not be asking this question ;)), the fitting process begins by making a very small change to each Parameter value to determine which way and how large of a change to make for the parameter: This is the derivative or Jacobian (change in residual per change in parameter value). By default, the change made for each variable Parameter is to multiply its value by (1.0+1.0e-8) or so (unless the value is below about 1.e-15, in which case it adds 1.0e-8). If that small change does not change the residual, then the value of the Parameter will not be updated.

Parameter values that are “way off” are a common reason for Parameters being stuck at initial values. As an example, imagine fitting peak-like data with and x range of 0 to 10, peak centered at 6, and a width of 1 or 2 or so, as in the example at `doc_model_gaussian.py`. A Gaussian function with an initial value of for the peak center at 5 and an initial width or 5 will almost certainly find a good fit. An initial value of the peak center of -50 will end up being stuck with a “bad fit” because a small change in Parameters will still lead the modeled Gaussian to have no intensity over the actual range of the data. You should make sure that initial values for Parameters are reasonable enough to actually effect the fit. As it turns out in the example linked to above, changing the center value to any value between about 0 and 10 (that is, the data range) will result to a good fit.
Another common cause for Parameters being stuck at initial values is when the initial value is at a boundary value. For this case, too, a small change in the initial value for the Parameter will still leave the value at the boundary value and not show any real change in the residual.

If you’re using bounds, make sure the initial values for the Parameters are not at the boundary values.

Finally, one reason for a Parameter to not change is that they are actually used as discrete values. This is discussed below in *Can Parameters be used for Array Indices or Discrete Values?*.

4.10 Why are uncertainties in Parameters sometimes not determined?

In order for Parameter uncertainties to be estimated, each variable Parameter must actually change the fit, and cannot be stuck at an initial value or at a boundary value. See *Why are Parameter values sometimes stuck at initial values?* for why values may not change from their initial values.

4.11 Can Parameters be used for Array Indices or Discrete Values?

The short answer is “No”: variables in all of the fitting methods used in *lmfit* (and all of those available in *scipy.optimize*) are treated as continuous values, and represented as double precision floating point values. As an important example, you cannot have a variable that is somehow constrained to be an integer.

Still, it is a rather common question of how to fit data to a model that includes a breakpoint, perhaps

\[
 f(x; x_0, a, b, c) = \begin{cases}
 c & \text{for } x < x_0 \\
 a + bx^2 & \text{for } x > x_0
 \end{cases}
\]

That you implement with a model function and use to fit data like this:

```python
import numpy as np
import lmfit

def quad_off(x, x0, a, b, c):
    model = a + b * x**2
    model[np.where(x < x0)] = c
    return model

x0 = 19
b = 0.02
a = 2.0
xdat = np.linspace(0, 100, 101)
ydat = a + b * xdat**2
ydat[np.where(xdat < x0)] = a + b * x0**2
ydat += np.random.normal(scale=0.1, size=xdat.size)

mod = lmfit.Model(quad_off)
pars = mod.make_params(x0=22, a=1, b=1, c=1)
```

(continues on next page)
result = mod.fit(ydat, pars, x=xdat)
print(result.fit_report())

[[Model]]
 Model(quad_off)
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 11
 # data points = 101
 # variables = 4
 chi-square = 8.56937557
 reduced chi-square = 0.08834408
 Akaike info crit = -241.159491
 Bayesian info crit = -230.699009
Warning: uncertainties could not be estimated:
 x0: at initial value
[[Variables]]
 x0: 22.0000000 (init = 22)
 a: 2.01362058 (init = 1)
 b: 0.01999551 (init = 1)
 c: 9.40565127 (init = 1)

This will not result in a very good fit, as the value for x0 cannot be found by making a small change in its value. Specifically, model[np.where(x < x0)] will give the same result for x0=22 and x0=22.001, and so that value is not changed during the fit.

There are a couple ways around this problem. First, you may be able to make the fit depend on x0 in a way that is not just discrete. That depends on your model function. A second option is to treat the break not as a hard break but as a more gentle transition with a sigmoidal function, such as an error function. Like the break-point, these will go from 0 to 1, but more gently and with some finite value leaking into neighboring points. The amount of leakage or width of the step can also be adjusted.

A simple modification of the above to use an error function would look like this and give better fit results:

```python
import numpy as np
from scipy.special import erf
import lmfit

def quad_off(x, x0, a, b, c):
    m1 = a + b * x**2
    m2 = c * np.ones(len(x))
    # step up from 0 to 1 at x0: (erf(x-x0)+1)/2
    # step down from 1 to 0 at x0: (1-erf(x-x0))/2
    model = m1 * (erf(x-x0)+1)/2 + m2 * (1-erf(x-x0))/2
    return model

x0 = 19
b = 0.02
a = 2.0
xdat = np.linspace(0, 100, 101)
ydat = a + b * xdat**2
ydat[np.where(xdat < x0)] = a + b * x0**2
ydat += np.random.normal(scale=0.1, size=xdat.size)
```
mod = lmfit.Model(quad_off)
pars = mod.make_params(x0=22, a=1, b=1, c=1)

result = mod.fit(ydat, pars, x=xdat)
print(result.fit_report())

The natural width of the error function is about 2 \times units, but you can adjust this, shortening it with $\text{erf}((x-x_0) \times 2)$ to give a sharper transition for example.
This chapter describes the `Parameter` object, which is a key concept of lmfit.

A `Parameter` is the quantity to be optimized in all minimization problems, replacing the plain floating point number used in the optimization routines from `scipy.optimize`. A `Parameter` has a value that can either be varied in the fit or held at a fixed value, and can have lower and/or upper bounds placed on the value. It can even have a value that is constrained by an algebraic expression of other Parameter values. Since `Parameter` objects live outside the core optimization routines, they can be used in all optimization routines from `scipy.optimize`. By using `Parameter` objects instead of plain variables, the objective function does not have to be modified to reflect every change of what is varied in the fit, or whether bounds can be applied. This simplifies the writing of models, allowing general models that describe the phenomenon and gives the user more flexibility in using and testing variations of that model.

Whereas a `Parameter` expands on an individual floating point variable, the optimization methods actually still need an ordered group of floating point variables. In the `scipy.optimize` routines this is required to be a one-dimensional `numpy.ndarray`. In lmfit, this one-dimensional array is replaced by a `Parameters` object, which works as an ordered dictionary of `Parameter` objects with a few additional features and methods. That is, while the concept of a `Parameter` is central to lmfit, one normally creates and interacts with a `Parameters` instance that contains many `Parameter` objects. For example, the objective functions you write for lmfit will take an instance of `Parameters` as its first argument. A table of parameter values, bounds, and other attributes can be printed using `Parameters.pretty_print()`.

5.1 The Parameter class

```python
class Parameter(name, value=None, vary=True, min=-inf, max=inf, expr=None, brute_step=None, user_data=None)
```

A Parameter is an object that can be varied in a fit.

It is a central component of lmfit, and all minimization and modeling methods use Parameter objects.

A Parameter has a `name` attribute, and a scalar floating point `value`. It also has a `vary` attribute that describes whether the value should be varied during the minimization. Finite bounds can be placed on the Parameter’s value by setting its `min` and/or `max` attributes. A Parameter can also have its value determined by a mathematical expression of other Parameter values held in the `expr` attribute. Additional attributes include `brute_step` used as the step size in a brute-force minimization, and `user_data` reserved exclusively for user’s need.

After a minimization, a Parameter may also gain other attributes, including `stderr` holding the estimated standard error in the Parameter’s value, and `correl`, a dictionary of correlation values with other Parameters used in the minimization.

Parameters

- `name (str)` – Name of the Parameter.
- `value (float, optional)` – Numerical Parameter value.
• **vary** *(bool, optional)* – Whether the Parameter is varied during a fit (default is True).

• **min** *(float, optional)* – Lower bound for value (default is \(-\text{numpy.inf}\), no lower bound).

• **max** *(float, optional)* – Upper bound for value (default is \(\text{numpy.inf}\), no upper bound).

• **expr** *(str, optional)* – Mathematical expression used to constrain the value during the fit (default is None).

• **brute_step** *(float, optional)* – Step size for grid points in the *brute* method (default is None).

• **user_data** *(optional)* – User-definable extra attribute used for a Parameter (default is None).

stderr

The estimated standard error for the best-fit value.

Type **float**

correl

A dictionary of the correlation with the other fitted Parameters of the form:

```python
{'decay': 0.404, 'phase': -0.020, 'frequency': 0.102}
```

Type **dict**

See *Bounds Implementation* for details on the math used to implement the bounds with **min** and **max**.

The **expr** attribute can contain a mathematical expression that will be used to compute the value for the Parameter at each step in the fit. See *Using Mathematical Constraints* for more details and examples of this feature.

set *(value=None, vary=None, min=None, max=None, expr=None, brute_step=None)*

Set or update Parameter attributes.

Parameters

• **value** *(float, optional)* – Numerical Parameter value.

• **vary** *(bool, optional)* – Whether the Parameter is varied during a fit.

• **min** *(float, optional)* – Lower bound for value. To remove a lower bound you must use \(-\text{numpy.inf}\).

• **max** *(float, optional)* – Upper bound for value. To remove an upper bound you must use \(\text{numpy.inf}\).

• **expr** *(str, optional)* – Mathematical expression used to constrain the value during the fit. To remove a constraint you must supply an empty string.

• **brute_step** *(float, optional)* – Step size for grid points in the *brute* method. To remove the step size you must use 0.
Notes

Each argument to set() has a default value of None, which will leave the current value for the attribute unchanged. Thus, to lift a lower or upper bound, passing in None will not work. Instead, you must set these to -numpy.inf or numpy.inf, as with:

```
par.set(min=None)  # leaves lower bound unchanged
par.set(min=-numpy.inf)  # removes lower bound
```

Similarly, to clear an expression, pass a blank string, (not None!) as with:

```
par.set(expr=None)  # leaves expression unchanged
par.set(expr='')  # removes expression
```

Explicitly setting a value or setting vary=True will also clear the expression.

Finally, to clear the brute_step size, pass 0, not None:

```
par.set(brute_step=None)  # leaves brute_step unchanged
par.set(brute_step=0)  # removes brute_step
```

5.2 The Parameters class

```python
class Parameters (asteval=None, usersyms=None)
```

An ordered dictionary of Parameter objects.

It should contain all Parameter objects that are required to specify a fit model. All minimization and Model fitting routines in lmfit will use exactly one Parameters object, typically given as the first argument to the objective function.

All keys of a Parameters() instance must be strings and valid Python symbol names, so that the name must match `[a-z_] [a-z0-9_]*` and cannot be a Python reserved word.

All values of a Parameters() instance must be Parameter objects.

A Parameters() instance includes an asteval Interpreter used for evaluation of constrained Parameters.

Parameters() support copying and pickling, and have methods to convert to and from serializations using json strings.

Parameters

- **asteval** (asteval.Interpreter, optional) – Instance of the asteval.Interpreter to use for constraint expressions. If None (default), a new interpreter will be created. Warning: deprecated, use usersyms if possible!
- **usersyms** (dict, optional) – Dictionary of symbols to add to the asteval. Interpreter (default is None).

```
def add(self, name, value=None, vary=True, min=-inf, max=inf, expr=None, brute_step=None)
```

Add a Parameter.

Parameters

- **name** (str) – Name of parameter. Must match `[a-z_] [a-z0-9_]*` and cannot be a Python reserved word.
- **value** (float, optional) – Numerical Parameter value, typically the initial value.
- `**vary** (bool, optional) – Whether the Parameter is varied during a fit (default is True).
- `**min** (float, optional) – Lower bound for value (default is `-numpy.inf`, no lower bound).
- `**max** (float, optional) – Upper bound for value (default is `numpy.inf`, no upper bound).
- `**expr** (str, optional) – Mathematical expression used to constrain the value during the fit (default is None).
- `**brute_step** (float, optional) – Step size for grid points in the `brute` method (default is None).

Examples

```python
>>> params = Parameters()
>>> params.add('xvar', value=0.50, min=0, max=1)
>>> params.add('yvar', expr='1.0 - xvar')
```

which is equivalent to:

```python
>>> params = Parameters()
>>> params['xvar'] = Parameter(name='xvar', value=0.50, min=0, max=1)
>>> params['yvar'] = Parameter(name='yvar', expr='1.0 - xvar')
```

`add_many` (*parlist*)

Add many parameters, using a sequence of tuples.

Parameters *parlist* (sequence of tuple or Parameter) – A sequence of tuples, or a sequence of Parameter instances. If it is a sequence of tuples, then each tuple must contain at least a *name*. The order in each tuple must be (name, value, vary, min, max, expr, brute_step).

Examples

```python
>>> params = Parameters()
# add with tuples: (NAME VALUE VARY MIN MAX EXPR BRUTE_STEP)
>>> params.add_many(("amp", 10, True, None, None, None, None),
...                  ('cen', 4, True, 0.0, None, None, None),
...                  ('wid', 1, False, None, None, None, None),
...                  ('frac', 0.5))
# add a sequence of Parameters
>>> f = Parameter('par_f', 100)
>>> g = Parameter('par_g', 2.)
>>> params.add_many(f, g)
```

`pretty_print` (*oneline=False, colwidth=8, precision=4, fmt='g', columns=['value', 'min', 'max', 'stderr', 'vary', 'expr', 'brute_step]*)

Pretty-print of parameters data.

Parameters

- `**oneline** (bool, optional) – If True prints a one-line parameters representation (default is False).`
Valuesdict()

return an ordered dictionary of parameter values.

returns an ordered dictionary of name:value pairs for each Parameter.

return type OrderedDict

dumps(**kws)

represent parameters as a JSON string.

parameters **kws (optional) – Keyword arguments that are passed to json.dumps.

returns JSON string representation of Parameters.

return type str

See also:
dump, loads, load, json.dumps
dump(fp, **kws)

write JSON representation of Parameters to a file-like object.

parameters

fp (file-like object) – An open and .write()-supporting file-like object.

**kws (optional) – Keyword arguments that are passed to dumps.

returns Return value from fp.write(): the number of characters written.

return type int

See also:
dumps, load, json.dump
eval(expr)

evaluate a statement using the asteval Interpreter.

parameters expr (str) – An expression containing parameter names and other symbols recognizable by the asteval Interpreter.

returns The result of evaluating the expression.

return type float

loads(s, **kws)

load parameters from a JSON string.

parameters **kws (optional) – Keyword arguments that are passed to json.loads.

returns Updated Parameters from the JSON string.

return type Parameters

5.2. The Parameters class
Notes

Current Parameters will be cleared before loading the data from the JSON string.

See also:
dump, dumps, load, json.loads

load(fp, **kws)
Load JSON representation of Parameters from a file-like object.

Parameters

- fp (file-like object) – An open and .read()-supporting file-like object.
- **kws (optional) – Keyword arguments that are passed to loads.

Returns
Updated Parameters loaded from fp.

Return type
Parameters

See also:
dump, loads, json.load

5.3 Simple Example

A basic example making use of Parameters and the minimize() function (discussed in the next chapter) might look like this:

```python
# <examples/doc_parameters_basic.py>
import numpy as np
from lmfit import Minimizer, Parameters, report_fit

# create data to be fitted
x = np.linspace(0, 15, 301)
data = (5.0 * np.sin(2.0*x - 0.1) * np.exp(-x*x*0.025) +
     np.random.normal(size=x.size, scale=0.2))

# define objective function: returns the array to be minimized
def fcn2min(params, x, data):
    """Model a decaying sine wave and subtract data."""
    amp = params['amp']
    shift = params['shift']
    omega = params['omega']
    decay = params['decay']
    model = amp * np.sin(x+omega + shift) * np.exp(-x*x*decay)
    return model - data

# create a set of Parameters
params = Parameters()
params.add('amp', value=10, min=0)
params.add('decay', value=0.1)
params.add('shift', value=0.0, min=-np.pi/2., max=np.pi/2.)
params.add('omega', value=3.0)
```

(continues on next page)
Here, the objective function explicitly unpacks each Parameter value. This can be simplified using the `Parameters` `valuesdict()` method, which would make the objective function `fcn2min` above look like:

```python
def fcn2min(params, x, data):
    """Model a decaying sine wave and subtract data.""
    v = params.valuesdict()
    model = v['amp'] * np.sin(x*v['omega'] + v['shift']) * np.exp(-x*x*v['decay'])
    return model - data
```

The results are identical, and the difference is a stylistic choice.
As shown in the previous chapter, a simple fit can be performed with the `minimize()` function. For more sophisticated modeling, the `Minimizer` class can be used to gain a bit more control, especially when using complicated constraints or comparing results from related fits.

6.1 The `minimize()` function

The `minimize()` function is a wrapper around `Minimizer` for running an optimization problem. It takes an objective function (the function that calculates the array to be minimized), a `Parameters` object, and several optional arguments. See [Writing a Fitting Function](#) for details on writing the objective function.

```python
minimize(fcn, params, method='leastsq', args=None, kws=None, iter_cb=None, scale_covar=True, nan_policy='raise', reduce_fcn=None, calc_covar=True, max_nfev=None, **fit_kws)
```

Perform the minimization of the objective function.

The minimize function takes an objective function to be minimized, a dictionary (`Parameters` object) containing the model parameters, and several optional arguments including the fitting method.

Parameters

- **fcn (callable)** – Objective function to be minimized. When method is `leastsq` or `least_squares`, the objective function should return an array of residuals (difference between model and data) to be minimized in a least-squares sense. With the scalar methods the objective function can either return the residuals array or a single scalar value. The function must have the signature:

  ```python
  fcn(params, *args, **kws)
  ```

- **params (Parameters)** – Contains the Parameters for the model.
- **method (str, optional)** – Name of the fitting method to use. Valid values are:
 - `leastsq`: Levenberg-Marquardt (default)
 - `least_squares`: Least-Squares minimization, using Trust Region Reflective method
 - `differential_evolution`: differential evolution
 - `brute`: brute force method
 - `basinhopping`: basinhopping
 - `ampgo`: Adaptive Memory Programming for Global Optimization
 - `nelder`: Nelder-Mead
 - `lbfgsb`: L-BFGS-B
– ‘powell’: Powell
– ‘cg’: Conjugate-Gradient
– ‘newton’: Newton-CG
– ‘cobyla’: Cobyla
– ‘bfgs’: BFGS
– ‘nc’: Truncated Newton
– ‘trust-reb’: Newton-CG trust-region
– ‘trust-exact’: nearly exact trust-region
– ‘trust-krylov’: Newton GLTR trust-region
– ‘trust-constr’: trust-region for constrained optimization
– ‘dogleg’: Dog-leg trust-region
– ‘slsqp’: Sequential Linear Squares Programming
– ‘emcee’: Maximum likelihood via Monte-Carlo Markov Chain
– ‘shgo’: Simplicial Homology Global Optimization
– ‘dual_annealing’: Dual Annealing optimization

In most cases, these methods wrap and use the method of the same name from scipy.optimize, or use scipy.optimize.minimize with the same method argument. Thus ‘leastsq’ will use scipy.optimize.leastsq, while ‘powell’ will use scipy.optimize.minimizer(..., method=’powell’)

For more details on the fitting methods please refer to the SciPy docs.

• **args** (tuple, optional) – Positional arguments to pass to fcn.

• **kws** (dict, optional) – Keyword arguments to pass to fcn.

• **iter_cb** (callable, optional) – Function to be called at each fit iteration. This function should have the signature:

```python
iter_cb(params, iter, resid, *args, **kws),
```

where params will have the current parameter values, iter the iteration number, resid the current residual array, and *args and **kws as passed to the objective function.

• **scale_covar** (bool, optional) – Whether to automatically scale the covariance matrix (default is True).

• **nan_policy** (‘raise’, ‘propagate’, ‘omit’, optional) – Specifies action if fcn (or a Jacobian) returns NaN values. One of:

 – ‘raise’: a ValueError is raised
 – ‘propagate’: the values returned from userfcn are un-altered
 – ‘omit’: non-finite values are filtered

• **reduce_fcn** (str or callable, optional) – Function to convert a residual array to a scalar value for the scalar minimizers. See Notes in Minimizer.

• **calc_covar** (bool, optional) – Whether to calculate the covariance matrix (default is True) for solvers other than ‘leastsq’ and ‘least_squares’. Requires the numdifftools package to be installed.
• **max_nfev** *(int or None, optional)* – Maximum number of function evaluations (default is None). The default value depends on the fitting method.

• **fit_kws** *(dict, optional)* – Options to pass to the minimizer being used.

Returns
Object containing the optimized parameters and several goodness-of-fit statistics.

Return type `MinimizerResult`

Changed in version 0.9.0: Return value changed to `MinimizerResult`.

Notes

The objective function should return the value to be minimized. For the Levenberg-Marquardt algorithm from `leastsq()`, this returned value must be an array, with a length greater than or equal to the number of fitting variables in the model. For the other methods, the return value can either be a scalar or an array. If an array is returned, the sum-of-squares of the array will be sent to the underlying fitting method, effectively doing a least-squares optimization of the return values.

A common use for `args` and `kws` would be to pass in other data needed to calculate the residual, including such things as the data array, dependent variable, uncertainties in the data, and other data structures for the model calculation.

On output, `params` will be unchanged. The best-fit values and, where appropriate, estimated uncertainties and correlations, will all be contained in the returned `MinimizerResult`. See `MinimizerResult` for further details.

This function is simply a wrapper around `Minimizer` and is equivalent to:

```python
fitter = Minimizer(fcn, params, fcn_args=args, fcn_kws=kws, 
                 iter_cb=iter_cb, scale_covar=scale_covar, 
                 nan_policy=nan_policy, reduce_fcn=reduce_fcn, 
                 calc_covar=calc_covar, **fit_kws)
```

```
fitter.minimize(method=method)
```

6.2 Writing a Fitting Function

An important component of a fit is writing a function to be minimized – the **objective function**. Since this function will be called by other routines, there are fairly stringent requirements for its call signature and return value. In principle, your function can be any Python callable, but it must look like this:

```python
func(params, *args, **kws):
    Calculate objective residual to be minimized from parameters.
```

Parameters

• `params` *(Parameters)* – Parameters.

• `args` – Positional arguments. Must match `args` argument to `minimize()`.

• `kws` – Keyword arguments. Must match `kws` argument to `minimize()`.

Returns
Residual array (generally `numpy.ndarray`) to be minimized in the least-squares sense.

Return type `numpy.ndarray`. The length of this array cannot change between calls.

A common use for the positional and keyword arguments would be to pass in other data needed to calculate the residual, including things as the data array, dependent variable, uncertainties in the data, and other data structures for the model calculation.
The objective function should return the value to be minimized. For the Levenberg-Marquardt algorithm from `leastsq()`, this returned value must be an array, with a length greater than or equal to the number of fitting variables in the model. For the other methods, the return value can either be a scalar or an array. If an array is returned, the sum of squares of the array will be sent to the underlying fitting method, effectively doing a least-squares optimization of the return values.

Since the function will be passed in a dictionary of Parameters, it is advisable to unpack these to get numerical values at the top of the function. A simple way to do this is with `Parameters.valuesdict()`, as shown below:

```python
from numpy import exp, sign, sin, pi

def residual(pars, x, data=None, eps=None):
    # unpack parameters: extract .value attribute for each parameter
    parvals = pars.valuesdict()
    period = parvals['period']
    shift = parvals['shift']
    decay = parvals['decay']

    if abs(shift) > pi/2:
        shift = shift - sign(shift)*pi

    if abs(period) < 1.e-10:
        period = sign(period)*1.e-10

    model = parvals['amp'] * sin(shift + x/period) * exp(-x*x*decay*decay)

    if data is None:
        return model
    if eps is None:
        return model - data
    return (model-data) / eps
```

In this example, `x` is a positional (required) argument, while the `data` array is actually optional (so that the function returns the model calculation if the data is neglected). Also note that the model calculation will divide `x` by the value of the `period` Parameter. It might be wise to ensure this parameter cannot be 0. It would be possible to use bounds on the `Parameter` to do this:

```python
params['period'] = Parameter(name='period', value=2, min=1.e-10)
```

but putting this directly in the function with:

```python
if abs(period) < 1.e-10:
    period = sign(period)*1.e-10
```

is also a reasonable approach. Similarly, one could place bounds on the `decay` parameter to take values only between `-pi/2` and `pi/2`.
6.3 Choosing Different Fitting Methods

By default, the Levenberg-Marquardt algorithm is used for fitting. While often criticized, including the fact it finds a local minima, this approach has some distinct advantages. These include being fast, and well-behaved for most curve-fitting needs, and making it easy to estimate uncertainties for and correlations between pairs of fit variables, as discussed in MinimizerResult – the optimization result.

Alternative algorithms can also be used by providing the method keyword to the minimize() function or Minimizer.minimize() class as listed in the Table of Supported Fitting Methods. If you have the numdifftools package installed, Lmfit will try to estimate the covariance matrix and determine parameter uncertainties and correlations if calc_covar is True (default).

Table of Supported Fitting Methods:

<table>
<thead>
<tr>
<th>Fitting Method</th>
<th>method arg to minimize() or Minimizer.minimize()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levenberg-Marquardt</td>
<td>leastsq or least_squares</td>
</tr>
<tr>
<td>Nelder-Mead</td>
<td>nelder</td>
</tr>
<tr>
<td>L-BFGS-B</td>
<td>lbfgsb</td>
</tr>
<tr>
<td>Powell</td>
<td>powell</td>
</tr>
<tr>
<td>Conjugate Gradient</td>
<td>cg</td>
</tr>
<tr>
<td>Newton-CG</td>
<td>newton</td>
</tr>
<tr>
<td>COBYLA</td>
<td>cobyla</td>
</tr>
<tr>
<td>BFGS</td>
<td>bfgsb</td>
</tr>
<tr>
<td>Truncated Newton</td>
<td>tnc</td>
</tr>
<tr>
<td>Newton CG trust-region</td>
<td>trust-nCG</td>
</tr>
<tr>
<td>Exact trust-region</td>
<td>trust-exact</td>
</tr>
<tr>
<td>Newton GLTR trust-region</td>
<td>trust-krylov</td>
</tr>
<tr>
<td>Constrained trust-region</td>
<td>trust-constr</td>
</tr>
<tr>
<td>Dogleg</td>
<td>dogleg</td>
</tr>
<tr>
<td>Sequential Linear Squares Programming</td>
<td>slsqp</td>
</tr>
<tr>
<td>Differential Evolution</td>
<td>differential_evolution</td>
</tr>
<tr>
<td>Brute force method</td>
<td>brute</td>
</tr>
<tr>
<td>Basin hopping</td>
<td>basinhopping</td>
</tr>
<tr>
<td>Adaptive Memory Programming for Global</td>
<td>ampgo</td>
</tr>
<tr>
<td>Optimization</td>
<td></td>
</tr>
<tr>
<td>Simplicial Homology Global Optimization</td>
<td>shgo</td>
</tr>
<tr>
<td>Dual Annealing</td>
<td>dual_annealing</td>
</tr>
<tr>
<td>Maximum likelihood via Monte-Carlo</td>
<td></td>
</tr>
<tr>
<td>Markov Chain</td>
<td>emcee</td>
</tr>
</tbody>
</table>

Note: The objective function for the Levenberg-Marquardt method must return an array, with more elements than variables. All other methods can return either a scalar value or an array. The Monte-Carlo Markov Chain or emcee method has two different operating methods when the objective function returns a scalar value. See the documentation for emcee.

Warning: Much of this documentation assumes that the Levenberg-Marquardt (leastsq) method is used. Many of the fit statistics and estimates for uncertainties in parameters discussed in MinimizerResult – the optimization result are done only unconditionally for this (and the least_squares) method. Lmfit versions newer than
0.9.11 provide the capability to use numdifftools to estimate the covariance matrix and calculate parameter uncertainties and correlations for other methods as well.

6.4 MinimizerResult – the optimization result

New in version 0.9.0.

An optimization with minimize() or Minimizer.minimize() will return a MinimizerResult object. This is an otherwise plain container object (that is, with no methods of its own) that simply holds the results of the minimization. These results will include several pieces of informational data such as status and error messages, fit statistics, and the updated parameters themselves.

Importantly, the parameters passed in to Minimizer.minimize() will be not be changed. To find the best-fit values, uncertainties and so on for each parameter, one must use the MinimizerResult.params attribute. For example, to print the fitted values, bounds and other parameter attributes in a well-formatted text tables you can execute:

```python
result.params.pretty_print()
```

with results being a MinimizerResult object. Note that the method pretty_print() accepts several arguments for customizing the output (e.g., column width, numeric format, etcetera).

```python
class MinimizerResult(**kws)

The results of a minimization.

Minimization results include data such as status and error messages, fit statistics, and the updated (i.e., best-fit) parameters themselves in the params attribute.

The list of (possible) MinimizerResult attributes is given below:

- **params**
  The best-fit parameters resulting from the fit.
  
  Type: Parameters

- **status**
  Termination status of the optimizer. Its value depends on the underlying solver. Refer to message for details.
  
  Type: int

- **var_names**
  Ordered list of variable parameter names used in optimization, and useful for understanding the values in init_vals and covar.
  
  Type: list

- **covar**
  Covariance matrix from minimization, with rows and columns corresponding to var_names.
  
  Type: numpy.ndarray

- **init_vals**
  List of initial values for variable parameters using var_names.
  
  Type: list

- **init_values**
  Dictionary of initial values for variable parameters.
```
Type	dict
\text{\texttt{nfev}} | Number of function evaluations.
Type | int
\text{\texttt{success}} | True if the fit succeeded, otherwise False.
Type | bool
\text{\texttt{errorbars}} | True if uncertainties were estimated, otherwise False.
Type | bool
\text{\texttt{message}} | Message about fit success.
Type | str
\text{\texttt{call_kws}} | Keyword arguments sent to underlying solver.
Type | dict
\text{\texttt{ier}} | Integer error value from \texttt{scipy.optimize.leastsq} (‘leastsq’ method only).
Type | int
\text{\texttt{lmdif_message}} | Message from \texttt{scipy.optimize.leastsq} (‘leastsq’ method only).
Type | str
\text{\texttt{nvarys}} | Number of variables in fit: \(N_{\text{varys}}\).
Type | int
\text{\texttt{ndata}} | Number of data points: \(N\).
Type | int
\text{\texttt{nfree}} | Degrees of freedom in fit: \(N - N_{\text{varys}}\).
Type | int
\text{\texttt{residual}} | Residual array \(\text{Resid}_i\). Return value of the objective function when using the best-fit values of the parameters.
Type | \texttt{numpy.ndarray}
\text{\texttt{chisqr}} | Chi-square: \(\chi^2 = \sum_i^N [\text{Resid}_i]^2\).
Type | float
\text{\texttt{redchi}} | Reduced chi-square: \(\chi^2_{\nu} = \chi^2/(N - N_{\text{varys}})\).
Type | float
6.4.1 Goodness-of-Fit Statistics

Table of Fit Results: These values, including the standard Goodness-of-Fit statistics, are all attributes of the `MinimizerResult` object returned by `minimize()` or `Minimizer.minimize()`.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Description / Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>nfev</td>
<td>number of function evaluations</td>
</tr>
<tr>
<td>nvarys</td>
<td>number of variables in fit N_{varys}</td>
</tr>
<tr>
<td>ndata</td>
<td>number of data points: N</td>
</tr>
<tr>
<td>nfree</td>
<td>degrees of freedom in fit: $N - N_{\text{varys}}$</td>
</tr>
<tr>
<td>residual</td>
<td>residual array, returned by the objective function: ${\text{Resid}_i}$</td>
</tr>
<tr>
<td>chisqr</td>
<td>chi-square: $\chi^2 = \sum_i^N [\text{Resid}_i]^2$</td>
</tr>
<tr>
<td>redchi</td>
<td>reduced chi-square: $\chi^*\nu = \chi^2 / (N - N{\text{varys}})$</td>
</tr>
<tr>
<td>aic</td>
<td>Akaike Information Criterion statistic (see below)</td>
</tr>
<tr>
<td>bic</td>
<td>Bayesian Information Criterion statistic (see below)</td>
</tr>
<tr>
<td>var_names</td>
<td>ordered list of variable parameter names used for init_vals and covar</td>
</tr>
<tr>
<td>covar</td>
<td>covariance matrix (with rows/columns using var_names)</td>
</tr>
<tr>
<td>init_vals</td>
<td>list of initial values for variable parameters</td>
</tr>
<tr>
<td>call_kws</td>
<td>dict of keyword arguments sent to underlying solver</td>
</tr>
</tbody>
</table>

Note that the calculation of chi-square and reduced chi-square assume that the returned residual function is scaled properly to the uncertainties in the data. For these statistics to be meaningful, the person writing the function to be minimized must scale them properly.

After a fit using the `leastsq()` or `least_squares()` method has completed successfully, standard errors for the fitted variables and correlations between pairs of fitted variables are automatically calculated from the covariance matrix. For other methods, the `calc_covar` parameter (default is True) in the `Minimizer` class determines whether or not to use the `numdifftools` package to estimate the covariance matrix. The standard error (estimated 1σ error-bar) goes into the `stderr` attribute of the Parameter. The correlations with all other variables will be put into the `correl` attribute of the Parameter – a dictionary with keys for all other Parameters and values of the corresponding correlation.

In some cases, it may not be possible to estimate the errors and correlations. For example, if a variable actually has no practical effect on the fit, it will likely cause the covariance matrix to be singular, making standard errors impossible to estimate. Placing bounds on varied Parameters makes it more likely that errors cannot be estimated, as being near the maximum or minimum value makes the covariance matrix singular. In these cases, the `errorbars` attribute of the fit result (`Minimizer` object) will be `False`.
6.4.2 Akaike and Bayesian Information Criteria

The MinimizerResult includes the traditional chi-square and reduced chi-square statistics:

\[\chi^2 = \sum_i r_i^2 \]
\[\chi^2_{\nu} = \frac{\chi^2}{N - N_{\text{varys}}} \]

where \(r \) is the residual array returned by the objective function (likely to be \((\text{data-model})/\text{uncertainty}\) for data modeling usages), \(N \) is the number of data points (\(n_{\text{data}} \)), and \(N_{\text{varys}} \) is number of variable parameters.

Also included are the Akaike Information Criterion, and Bayesian Information Criterion statistics, held in the aic and bic attributes, respectively. These give slightly different measures of the relative quality for a fit, trying to balance quality of fit with the number of variable parameters used in the fit. These are calculated as:

\[\text{aic} = N \ln(\chi^2/N) + 2N_{\text{varys}} \]
\[\text{bic} = N \ln(\chi^2/N) + \ln(N)N_{\text{varys}} \]

When comparing fits with different numbers of varying parameters, one typically selects the model with lowest reduced chi-square, Akaike information criterion, and/or Bayesian information criterion. Generally, the Bayesian information criterion is considered the most conservative of these statistics.

6.4.3 Uncertainties in Variable Parameters, and their Correlations

As mentioned above, when a fit is complete the uncertainties for fitted Parameters as well as the correlations between pairs of Parameters are usually calculated. This happens automatically either when using the default leastsq() method, the least_squares() method, or for most other fitting methods if the highly-recommended numdifftools package is available. The estimated standard error (the 1\(\sigma\) uncertainty) for each variable Parameter will be contained in the stderr, while the correl attribute for each Parameter will contain a dictionary of the correlation with each other variable Parameter.

These estimates of the uncertainties are done by inverting the Hessian matrix which represents the second derivative of fit quality for each variable parameter. There are situations for which the uncertainties cannot be estimated, which generally indicates that this matrix cannot be inverted because one of the fit is not actually sensitive to one of the variables. This can happen if a Parameter is stuck at an upper or lower bound, if the variable is simply not used by the fit, or if the value for the variable is such that it has no real influence on the fit.

In principle, the scale of the uncertainties in the Parameters is closely tied to the goodness-of-fit statistics chi-square and reduced chi-square (chisqr and redchi). The standard errors or 1\(\sigma\) uncertainties are those that increase chi-square by 1. Since a “good fit” should have redchi of around 1, this requires that the data uncertainties (and to some extent the sampling of the N data points) is correct. Unfortunately, it is often not the case that one has high-quality estimates of the data uncertainties (getting the data is hard enough!). Because of this common situation, the uncertainties reported and held in stderr are not those that increase chi-square by 1, but those that increase chi-square by reduced chi-square. This is equivalent to rescaling the uncertainty in the data such that reduced chi-square would be 1. To be clear, this rescaling is done by default because if reduced chi-square is far from 1, this rescaling often makes the reported uncertainties sensible, and if reduced chi-square is near 1 it does little harm. If you have good scaling of the data uncertainty and believe the scale of the residual array is correct, this automatic rescaling can be turned off using scale_covar=False.

Note that the simple (and fast!) approach to estimating uncertainties and correlations by inverting the second derivative matrix assumes that the components of the residual array (if, indeed, an array is used) are distributed around 0 with a normal (Gaussian distribution), and that a map of probability distributions for pairs would be elliptical – the size of the ellipse gives the uncertainty itself and the eccentricity of the ellipse gives the correlation. This simple approach to assessing uncertainties ignores outliers, highly asymmetric uncertainties, or complex correlations between Parameters.
In fact, it is not too hard to come up with problems where such effects are important. Our experience is that the automated results are usually the right scale and quite reasonable as initial estimates, but a more thorough exploration of the Parameter space using the tools described in *Minimizer.emcee* - calculating the posterior probability distribution of parameters and *An advanced example for evaluating confidence intervals* can give a more complete understanding of the distributions and relations between Parameters.

6.5 Getting and Printing Fit Reports

fit_report *(inpars, modelpars=None, show_correl=True, min_correl=0.1, sort_pars=False)*

Generate a report of the fitting results.

The report contains the best-fit values for the parameters and their uncertainties and correlations.

Parameters

- **inpars** (*Parameters*) – Input Parameters from fit or MinimizerResult returned from a fit.
- **modelpars** (*Parameters, optional*) – Known Model Parameters.
- **show_correl** (*bool, optional*) – Whether to show list of sorted correlations (default is True).
- **min_correl** (*float, optional*) – Smallest correlation in absolute value to show (default is 0.1).
- **sort_pars** (*bool or callable, optional*) – Whether to show parameter names sorted in alphanumerical order. If False (default), then the parameters will be listed in the order they were added to the Parameters dictionary. If callable, then this (one argument) function is used to extract a comparison key from each list element.

Returns Multi-line text of fit report.

Return type *str*

An example using this to write out a fit report would be:

```python
from numpy import exp, linspace, pi, random, sign, sin
from lmfit import Parameters, fit_report, minimize

p_true = Parameters()
p_true.add('amp', value=14.0)
p_true.add('period', value=5.46)
p_true.add('shift', value=0.123)
p_true.add('decay', value=0.032)

def residual(pars, x, data=None):
    """Model a decaying sine wave and subtract data."""
    vals = pars.valuesdict()
    amp = vals['amp']
    per = vals['period']
    shift = vals['shift']
    decay = vals['decay']

    if abs(shift) > pi/2:
```

(continues on next page)
Non-Linear Least-Squares Minimization and Curve-Fitting for Python, Release 1.0.2

(continued from previous page)

```python
    shift = shift - sign(shift)*pi
    model = amp * sin(shift + x/per) * exp(-x*x*decay*decay)
    if data is None:
        return model
    return model - data
```

random.seed(0)
x = linspace(0.0, 250., 1001)
noise = random.normal(scale=0.7215, size=x.size)
data = residual(p_true, x) + noise

fit_params = Parameters()
fit_params.add('amp', value=13.0)
fit_params.add('period', value=2)
fit_params.add('shift', value=0.0)
fit_params.add('decay', value=0.02)

out = minimize(residual, fit_params, args=(x,), kws={'data': data})

print(fit_report(out))
```

which would give as output:

```
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 83
 # data points = 1001
 # variables = 4
 chi-square = 498.811759
 reduced chi-square = 0.50031270
 Akaike info crit = -689.222517
 Bayesian info crit = -669.587497
[[Variables]]
 amp: 13.9121945 +/- 0.14120288 (1.01%) (init = 13)
 period: 5.48507045 +/- 0.02666492 (0.49%) (init = 2)
 shift: 0.16203677 +/- 0.01405661 (8.67%) (init = 0)
 decay: 0.03264538 +/- 3.8014e-04 (1.16%) (init = 0.02)
[[Correlations]] (unreported correlations are < 0.100)
C(period, shift) = 0.797
C(amp, decay) = 0.582
C(amp, shift) = -0.297
C(amp, period) = -0.243
C(shift, decay) = -0.182
C(period, decay) = -0.150
```

To be clear, you can get at all of these values from the fit result `out` and `out.params`. For example, a crude printout of the best fit variables and standard errors could be done as

```python
print('-------------------------------')
print('Parameter Value Stderr')
for name, param in out.params.items():
 print('{}: {:+11.5f} {:+11.5f}'.format(name, param.value, param.stderr))

```

(continues on next page)

6.5. Getting and Printing Fit Reports 39
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Stderr</th>
</tr>
</thead>
<tbody>
<tr>
<td>amp</td>
<td>13.9121</td>
<td>0.1412</td>
</tr>
<tr>
<td>period</td>
<td>5.4850</td>
<td>0.0266</td>
</tr>
<tr>
<td>shift</td>
<td>0.1620</td>
<td>0.0140</td>
</tr>
<tr>
<td>decay</td>
<td>0.0326</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

### 6.6 Using a Iteration Callback Function

An iteration callback function is a function to be called at each iteration, just after the objective function is called. The iteration callback allows user-supplied code to be run at each iteration, and can be used to abort a fit.

```python
iter_cb(params, iter, resid, *args, **kws):
 User-supplied function to be run at each iteration.
```

Parameters

- `params (Parameters)` – Parameters.
- `iter (int)` – Iteration number.
- `resid (numpy.ndarray)` – Residual array.
- `args` – Positional arguments. Must match `args` argument to `minimize()`.
- `kws` – Keyword arguments. Must match `kws` argument to `minimize()`.

Returns

Residual array (generally `data-model`) to be minimized in the least-squares sense.

Return type

None for normal behavior, any value like `True` to abort the fit.

Normally, the iteration callback would have no return value or return `None`. To abort a fit, have this function return a value that is `True` (including any non-zero integer). The fit will also abort if any exception is raised in the iteration callback. When a fit is aborted this way, the parameters will have the values from the last iteration. The fit statistics are not likely to be meaningful, and uncertainties will not be computed.

### 6.7 Using the Minimizer class

For full control of the fitting process, you will want to create a `Minimizer` object.

```python
class Minimizer(userfcn, params, fcn_args=None, fcn_kws=None, iter_cb=None, scale_covar=True, nan_policy='raise', reduce_fcn=None, calc_covar=True, max_nfev=None, **kws)
```

A general minimizer for curve fitting and optimization.

Parameters

- `userfcn (callable)` – Objective function that returns the residual (difference between model and data) to be minimized in a least-squares sense. This function must have the signature:

  ```python
 userfcn(params, *fcn_args, **fcn_kws)
  ```

- `params (Parameters)` – Contains the Parameters for the model.
- `fcn_args (tuple, optional)` – Positional arguments to pass to `userfcn`.
- `fcn_kws (dict, optional)` – Keyword arguments to pass to `userfcn`. 

Chapter 6. Performing Fits and Analyzing Outputs
iter_cb (callable, optional) – Function to be called at each fit iteration. This function should have the signature:

iter_cb(params, iter, resid, *fcn_args, **fcn_kws)

where params will have the current parameter values, iter the iteration number, resid the current residual array, and *fcn_args and **fcn_kws are passed to the objective function.

scale_covar (bool, optional) – Whether to automatically scale the covariance matrix (default is True).

nan_policy ({'raise', 'propagate', 'omit'}, optional) – Specifies action if userfcn (or a Jacobian) returns NaN values. One of:

- 'raise': a ValueError is raised (default)
- 'propagate': the values returned from userfcn are un-altered
- 'omit': non-finite values are filtered

reduce_fcn (str or callable, optional) – Function to convert a residual array to a scalar value for the scalar minimizers. Optional values are (where r is the residual array):

- None : sum-of-squares of residual (default)
  = (r*r).sum()
- 'negentropy': neg entropy, using normal distribution
  = rho*log(rho).sum() , where rho = exp(-(r*r)/2)/(sqrt(2*pi))
- 'neglogcauchy': neg log likelihood, using Cauchy distribution
  = log(1/(pi*(1+r*r))).sum()
- callable : must take one argument (r) and return a float.

calc_covar (bool, optional) – Whether to calculate the covariance matrix (default is True) for solvers other than 'leastsq' and 'least_squares'. Requires the numdifftools package to be installed.

max_nfev (int or None, optional) – Maximum number of function evaluations (default is None). The default value depends on the fitting method.

**kws (dict, optional) – Options to pass to the minimizer being used.

Notes

The objective function should return the value to be minimized. For the Levenberg-Marquardt algorithm from leastsq() or least_squares(), this returned value must be an array, with a length greater than or equal to the number of fitting variables in the model. For the other methods, the return value can either be a scalar or an array. If an array is returned, the sum-of-squares of the array will be sent to the underlying fitting method, effectively doing a least-squares optimization of the return values. If the objective function returns non-finite values then a ValueError will be raised because the underlying solvers cannot deal with them.

A common use for the fcn_args and fcn_kws would be to pass in other data needed to calculate the residual, including such things as the data array, dependent variable, uncertainties in the data, and other data structures for the model calculation.

The Minimizer object has a few public methods:
Minimizer.minimize(method='leastsq', params=None, **kws)
Perform the minimization.

Parameters

- **method** *(str, optional)* – Name of the fitting method to use. Valid values are:
  - 'leastsq': Levenberg-Marquardt (default)
  - 'least_squares': Least-Squares minimization, using Trust Region Reflective method
  - 'differential_evolution': differential evolution
  - 'brute': brute force method
  - 'basinhopping': basinhopping
  - 'ampgo': Adaptive Memory Programming for Global Optimization
  - 'nelder': Nelder-Mead
  - 'lbfgsb': L-BFGS-B
  - 'powell': Powell
  - 'cg': Conjugate-Gradient
  - 'newton': Newton-CG
  - 'cobyla': Cobyla
  - 'bfgs': BFGS
  - 'trust-ncg': Newton-CG trust-region
  - 'trust-exact': nearly exact trust-region
  - 'trust-krylov': Newton GLTR trust-region
  - 'trust-constr': trust-region for constrained optimization
  - 'dogleg': Dog-leg trust-region
  - 'slsqp': Sequential Linear Squares Programming
  - 'emcee': Maximum likelihood via Monte-Carlo Markov Chain
  - 'shgo': Simplicial Homology Global Optimization
  - 'dual_annealing': Dual Annealing optimization

In most cases, these methods wrap and use the method with the same name from scipy.optimize, or use scipy.optimize.minimize with the same method argument. Thus 'leastsq' will use scipy.optimize.leastsq, while 'powell' will use scipy.optimize.minimizer(..., method='powell').

For more details on the fitting methods please refer to the SciPy documentation.

- **params** *(Parameters, optional)* – Parameters of the model to use as starting values.
- ****kws *(optional)* – Additional arguments are passed to the underlying minimization method.

Returns Object containing the optimized parameters and several goodness-of-fit statistics.

Return type MinimizerResult
Minimizer.leastsq(params=None, max_nfev=None, **kws)

Use Levenberg-Marquardt minimization to perform a fit.

It assumes that the input Parameters have been initialized, and a function to minimize has been properly set up. When possible, this calculates the estimated uncertainties and variable correlations from the covariance matrix.

This method calls scipy.optimize.leastsq and, by default, numerical derivatives are used, and the following arguments are set:

<table>
<thead>
<tr>
<th>leastsq(arg)</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xtol</td>
<td>1.e-7</td>
<td>Relative error in the approximate solution</td>
</tr>
<tr>
<td>ftol</td>
<td>1.e-7</td>
<td>Relative error in the desired sum-of-squares</td>
</tr>
<tr>
<td>Dfun</td>
<td>None</td>
<td>Function to call for Jacobian calculation</td>
</tr>
</tbody>
</table>

Parameters

- `params` (Parameters, optional) – Parameters to use as starting point.
- `max_nfev` (int or None, optional) – Maximum number of function evaluations. Defaults to $2000 \times (nvars+1)$, where `nvars` is the number of variable parameters.
- `**kws` (dict, optional) – Minimizer options to pass to scipy.optimize.leastsq.

Returns

Object containing the optimized parameters and several goodness-of-fit statistics.

Return type: MinimizerResult

Minimizer.least_squares(params=None, max_nfev=None, **kws)

Least-squares minimization using scipy.optimize.least_squares.

This method wraps scipy.optimize.least_squares, which has built-in support for bounds and robust loss functions. By default it uses the Trust Region Reflective algorithm with a linear loss function (i.e., the standard least-squares problem).

Parameters

- `params` (Parameters, optional) – Parameters to use as starting point.
- `max_nfev` (int or None, optional) – Maximum number of function evaluations. Defaults to $2000 \times (nvars+1)$, where `nvars` is the number of variable parameters.
- `**kws` (dict, optional) – Minimizer options to pass to scipy.optimize.least_squares.

Returns

Object containing the optimized parameters and several goodness-of-fit statistics.

Return type: MinimizerResult

Minimizer.scalar_minimize(method='Nelder-Mead', params=None, max_nfev=None, **kws)

Scalar minimization using scipy.optimize.minimize.

Perform fit with any of the scalar minimization algorithms supported by scipy.optimize.minimize. Default argument values are:

<table>
<thead>
<tr>
<th>scalar_minimize(arg)</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
<td>‘Nelder-Mead’</td>
<td>fitting method</td>
</tr>
<tr>
<td>tol</td>
<td>1.e-7</td>
<td>fitting and parameter tolerance</td>
</tr>
<tr>
<td>hess</td>
<td>None</td>
<td>Hessian of objective function</td>
</tr>
</tbody>
</table>
Parameters

- **method** *(str, optional)* – Name of the fitting method to use. One of:
  - ‘Nelder-Mead’ (default)
  - ‘L-BFGS-B’
  - ‘Powell’
  - ‘CG’
  - ‘Newton-CG’
  - ‘COBYLA’
  - ‘BFGS’
  - ‘TNC’
  - ‘trust-neg’
  - ‘trust-exact’
  - ‘trust-krylov’
  - ‘trust-constr’
  - ‘dogleg’
  - ‘SLSQP’
  - ‘differential_evolution’

- **params** *(Parameters, optional)* – Parameters to use as starting point.

- **max_nfev** *(int or None, optional)* – Maximum number of function evaluations. Defaults to \(2000 \times (nvars + 1)\), where \(nvars\) is the number of variable parameters.

- ****kws** *(dict, optional)* – Minimizer options pass to scipy.optimize.minimize.

**Returns** Object containing the optimized parameters and several goodness-of-fit statistics.

**Return type** *MinimizerResult*

Changed in version 0.9.0: Return value changed to MinimizerResult.

**Notes**

If the objective function returns a NumPy array instead of the expected scalar, the sum-of-squares of the array will be used.

Note that bounds and constraints can be set on Parameters for any of these methods, so are not supported separately for those designed to use bounds. However, if you use the differential_evolution method you must specify finite \((\text{min}, \text{max})\) for each varying Parameter.

Minimizer.prepare_fit *(params=None)*

Prepare parameters for fitting.

Prepares and initializes model and Parameters for subsequent fitting. This routine prepares the conversion of Parameters into fit variables, organizes parameter bounds, and parses, “compiles” and checks constrain expressions. The method also creates and returns a new instance of a MinimizerResult object that contains the copy of the Parameters that will actually be varied in the fit.

**Parameters** params *(Parameters, optional)* – Contains the Parameters for the model; if None, then the Parameters used to initialize the Minimizer object are used.
Returns

Return type: MinimizerResult

Notes

This method is called directly by the fitting methods, and it is generally not necessary to call this function explicitly.

Changed in version 0.9.0: Return value changed to MinimizerResult.

Minimizer.brute (params=None, Ns=20, keep=50, workers=1, max_nfev=None)

Use the brute method to find the global minimum of a function.

The following parameters are passed to scipy.optimize.brute and cannot be changed:

<table>
<thead>
<tr>
<th>brute() arg</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>full_output</td>
<td>1</td>
<td>Return the evaluation grid and the objective function’s values on it.</td>
</tr>
<tr>
<td>finish</td>
<td>None</td>
<td>No “polishing” function is to be used after the grid search.</td>
</tr>
<tr>
<td>disp</td>
<td>False</td>
<td>Do not print convergence messages (when finish is not None).</td>
</tr>
</tbody>
</table>

It assumes that the input Parameters have been initialized, and a function to minimize has been properly set up.

Parameters

- **params** (Parameters, optional) - Contains the Parameters for the model. If None, then the Parameters used to initialize the Minimizer object are used.

- **Ns** (int, optional) - Number of grid points along the axes, if not otherwise specified (see Notes).

- **keep** (int, optional) - Number of best candidates from the brute force method that are stored in the candidates attribute. If ‘all’, then all grid points from scipy.optimize.brute are stored as candidates.

- **workers** (int or map-like callable, optional) - For parallel evaluation of the grid (see scipy.optimize.brute for more details).

- **max_nfev** (int or None, optional) - Maximum number of function evaluations (default is None). Defaults to 200000*(nvarys+1).

Returns Object containing the parameters from the brute force method. The return values (x0, fval, grid, Jout) from scipy.optimize.brute are stored as brute_<parname> attributes. The MinimizerResult also contains the candidates attribute and show_candidates() method. The candidates attribute contains the parameters and chisqr from the brute force method as a namedtuple, (Candidate, ['params', 'score']) sorted on the (lowest) chisqr value. To access the values for a particular candidate one can use result.candidate[#].params or result.candidate[#].score, where a lower # represents a better candidate. The show_candidates() method uses the pretty_print() method to show a specific candidate-# or all candidates when no number is specified.

Return type: MinimizerResult

New in version 0.9.6.

6.7. Using the Minimizer class
Notes

The \texttt{brute()} method evaluates the function at each point of a multidimensional grid of points. The grid points are generated from the parameter ranges using \texttt{Ns} and (optional) \texttt{brute_step}. The implementation in \texttt{scipy.optimize.brute} requires finite bounds and the range is specified as a two-tuple \((\text{min, max})\) or slice-object \((\text{min, max, brute_step})\). A slice-object is used directly, whereas a two-tuple is converted to a slice object that interpolates \texttt{Ns} points from \texttt{min} to \texttt{max}, inclusive.

In addition, the \texttt{brute()} method in \texttt{lmfit}, handles three other scenarios given below with their respective slice-object:

- **lower bound (min) and brute_step are specified**: range = \((\text{min, min + Ns * brute_step, brute_step})\).
- **upper bound (max) and brute_step are specified**: range = \((\text{max - Ns * brute_step, max, brute_step})\).
- **numerical value (value) and brute_step are specified**: range = \((\text{value - (Ns//2) * brute_step, value + (Ns//2) * brute_step, brute_step})\).

For more information, check the examples in \texttt{examples/lmfit_brute_example.ipynb}.

Minimizer.\texttt{basinhopping}(\texttt{params=None, max_nfev=None, **kws})

Use the \texttt{basinhopping} algorithm to find the global minimum.

This method calls \texttt{scipy.optimize.basinhopping} using the default arguments. The default minimizer is BFGS, but since \texttt{lmfit} supports parameter bounds for all minimizers, the user can choose any of the solvers present in \texttt{scipy.optimize.minimize}.

Parameters

- **params**: Contains the Parameters for the model. If None, then the Parameters used to initialize the Minimizer object are used.
- **max_nfev**: Maximum number of function evaluations. (default is None). Defaults to \(200000 \times (\text{nvars}+1)\).
- ****kws**: Minimizer options to pass to \texttt{scipy.optimize.basinhopping}.

Returns Object containing the optimization results from the basinhopping algorithm.

Return type \texttt{MinimizerResult}

Minimizer.\texttt{ampgo}(\texttt{params=None, max_nfev=None, **kws})

Find the global minimum of a multivariate function using AMPGO.

AMPGO stands for ‘Adaptive Memory Programming for Global Optimization’ and is an efficient algorithm to find the global minimum.

Parameters

- **params**: Contains the Parameters for the model. If None, then the Parameters used to initialize the Minimizer object are used.
- **max_nfev**: Maximum number of total function evaluations. If None (default), the optimization will stop after \texttt{totaliter} number of iterations (see below)..
- ****kws**: Minimizer options to pass to the \texttt{ampgo} algorithm, the options are listed below:
local: str, optional
Name of the local minimization method. Valid options are:
- 'L-BFGS-B' (default)
- 'Nelder-Mead'
- 'Powell'
- 'TNC'
- 'SLSQP'
local_opts: dict, optional
Options to pass to the local minimizer (default is None).
maxfunevals: int, optional
Maximum number of function evaluations. If None (default), the optimization will stop after 'totaliter' number of iterations (deprecated: use 'max_nfev' instead).
totaliter: int, optional
Maximum number of global iterations (default is 20).
maxiter: int, optional
Maximum number of 'Tabu Tunneling' iterations during each global iteration (default is 5).
glbltol: float, optional
Tolerance whether or not to accept a solution after a tunneling phase (default is 1e-5).
eps1: float, optional
Constant used to define an aspiration value for the objective function during the Tunneling phase (default is 0.02).
eps2: float, optional
Perturbation factor used to move away from the latest local minimum at the start of a Tunneling phase (default is 0.1).
tabulistsize: int, optional
Size of the (circular) tabu search list (default is 5).
tabustrategy: {',farthest', 'oldest'}, optional
Strategy to use when the size of the tabu list exceeds 'tabulistsize'. It can be 'oldest' to drop the oldest point from the tabu list or 'farthest' (default) to drop the element farthest from the last local minimum found.
disp: bool, optional
Set to True to print convergence messages (default is False).

**Returns**
Object containing the parameters from the ampgo method, with fit parameters, statistics and such. The return values (x0, fval, eval, msg, tunnel) are stored as ampgo_<parname> attributes.

**Return type** MinimizerResult

New in version 0.9.10.
Minimizer \texttt{shgo}(params=None, max_nfev=None, **kws)

Use the SHGO algorithm to find the global minimum.

SHGO stands for “simplicial homology global optimization” and calls \texttt{scipy.optimize.shgo} using its default arguments.

Parameters

- **params** (Parameters, optional) – Contains the Parameters for the model. If None, then the Parameters used to initialize the Minimizer object are used.
- **max_nfev** (int or None, optional) – Maximum number of function evaluations. Defaults to 200000\(\times\)(nvars+1), where \texttt{nvars} is the number of variable parameters.
- ****kws** (dict, optional) – Minimizer options to pass to the SHGO algorithm.

Returns

Object containing the parameters from the SHGO method. The return values specific to \texttt{scipy.optimize.shgo} (x, xl, fun, funl, nfev, nit, nlfev, nlhev, and nljev) are stored as \texttt{shgo_<parname>} attributes.

Return type \texttt{MinimizerResult}

New in version 0.9.14.

Minimizer \texttt{dual_annealing}(params=None, max_nfev=None, **kws)

Use the dual_annealing algorithm to find the global minimum.

This method calls \texttt{scipy.optimize.dual_annealing} using its default arguments.

Parameters

- **params** (Parameters, optional) – Contains the Parameters for the model. If None, then the Parameters used to initialize the Minimizer object are used.
- **max_nfev** (int or None, optional) – Maximum number of function evaluations. Defaults to 200000\(\times\)(nvars+1), where \texttt{nvars} is the number of variables.
- ****kws** (dict, optional) – Minimizer options to pass to the dual_annealing algorithm.

Returns

Object containing the parameters from the dual_annealing method. The return values specific to \texttt{scipy.optimize.dual_annealing} (x, fun, nfev, nhev, njev, and nit) are stored as \texttt{da_<parname>} attributes.

Return type \texttt{MinimizerResult}

New in version 0.9.14.

Minimizer \texttt{emcee}(params=None, steps=1000, nwalkers=100, burn=0, thin=1, ntemps=1, pos=None, reuse_sampler=False, workers=1, float_behavior=posterior, is_weighted=True, seed=None, progress=True, run_mcmc_kwvars={})

Bayesian sampling of the posterior distribution.

The method uses the \texttt{emcee} Markov Chain Monte Carlo package and assumes that the prior is Uniform. You need to have \texttt{emcee} version 3 or newer installed to use this method.
Parameters

- **params** *(Parameters, optional)* – Parameters to use as starting point. If this is not specified then the Parameters used to initialize the Minimizer object are used.

- **steps** *(int, optional)* – How many samples you would like to draw from the posterior distribution for each of the walkers?

- **nwalkers** *(int, optional)* – Should be set so \( n_{\text{walkers}} > n_{\text{varya}} \), where \( n_{\text{varya}} \) are the number of parameters being varied during the fit. ‘Walkers are the members of the ensemble. They are almost like separate Metropolis-Hastings chains but, of course, the proposal distribution for a given walker depends on the positions of all the other walkers in the ensemble.’ - from the emcee webpage.

- **burn** *(int, optional)* – Discard this many samples from the start of the sampling regime.

- **thin** *(int, optional)* – Only accept 1 in every \( thin \) samples.

- **ntemps** *(int, deprecated)* – \( n_{\text{temps}} \) has no effect.

- **pos** *(numpy.ndarray, optional)* – Specify the initial positions for the sampler, an ndarray of shape \( (n_{\text{walkers}}, n_{\text{varya}}) \). You can also initialise using a previous chain of the same \( n_{\text{walkers}} \) and \( n_{\text{varya}} \). Note that \( n_{\text{varya}} \) may be one larger than you expect it to be if your userfunc returns an array and is_weighted=False.

- **reuse_sampler** *(bool, optional)* – Set to True if you have already run emcee with the Minimizer instance and want to continue to draw from its sampler (and so retain the chain history). If False, a new sampler is created. The keywords \( n_{\text{walkers}}, \text{pos}, \) and \( \text{params} \) will be ignored when this is set, as they will be set by the existing sampler. Important: the Parameters used to create the sampler must not change in-between calls to emcee. Alteration of Parameters would include changed min, max, vary and expr attributes. This may happen, for example, if you use an altered Parameters object and call the minimize method in-between calls to emcee.

- **workers** *(Pool-like or int, optional)* – For parallelization of sampling. It can be any Pool-like object with a map method that follows the same calling sequence as the built-in map function. If int is given as the argument, then a multiprocessing-based pool is spawned internally with the corresponding number of parallel processes. ‘mpi4py’-based parallelization and ‘joblib’-based parallelization pools can also be used here. Note: because of multiprocessing overhead it may only be worth parallelising if the objective function is expensive to calculate, or if there are a large number of objective evaluations per step (\( n_{\text{walkers}} \times n_{\text{varya}} \)).

- **float_behavior** *(str, optional)* – Meaning of float (scalar) output of objective function. Use ‘posterior’ if it returns a log-posterior probability or ‘chi2’ if it returns \( \chi^2 \). See Notes for further details.

- **is_weighted** *(bool, optional)* – Has your objective function been weighted by measurement uncertainties? If is_weighted=True then your objective function is assumed to return residuals that have been divided by the true measurement uncertainty \( (\text{data} - \text{model}) / \sigma) \). If is_weighted=False then the objective function is assumed to return unweighted residuals, \( \text{data} - \text{model} \). In this case emcee will employ a positive measurement uncertainty during the sampling. This measurement uncertainty will be present in the output params and output chain with the name _lnsigma. A side effect of this is that you cannot use this parameter name yourself. Important: this parameter only has any effect if your objective function returns an array. If your objective function returns a float, then this parameter is ignored. See Notes for more details.
• **seed** *(int or numpy.random.RandomState, optional)* – If `seed` is an `int`, a new `numpy.random.RandomState` instance is used, seeded with `seed`. If `seed` is already a `numpy.random.RandomState` instance, then that `numpy.random.RandomState` instance is used. Specify `seed` for repeatable minimizations.

• **progress** *(bool, optional)* – Print a progress bar to the console while running.

• **run_mcmc_kwargs** *(dict, optional)* – Additional (optional) keyword arguments that are passed to `emcee.EnsembleSampler.run_mcmc`.

**Returns** MinimizerResult object containing updated params, statistics, etc. The updated params represent the median of the samples, while the uncertainties are half the difference of the 15.87 and 84.13 percentiles. The MinimizerResult contains a few additional attributes:

- `chain` contain the samples and has shape `((steps - burn) // thin, nwalkers, nvarys)`.
- `flatchain` is a `pandas.DataFrame` of the flattened chain, that can be accessed with `result.flatchain[parname]`. `lnprob` contains the log probability for each sample in `chain`. The sample with the highest probability corresponds to the maximum likelihood estimate. 
- `acor` is an array containing the autocorrelation time for each parameter if the autocorrelation time can be computed from the chain. Finally, `acceptance_fraction` (an array of the fraction of steps accepted for each walker).

**Return type** `MinimizerResult`

**Notes**

This method samples the posterior distribution of the parameters using Markov Chain Monte Carlo. It calculates the log-posterior probability of the model parameters, $F$, given the data, $D$, $\ln p(F_{true}|D)$. This ‘posterior probability’ is given by:

$$\ln p(F_{true}|D) \propto \ln p(D|F_{true}) + \ln p(F_{true})$$

where $\ln p(D|F_{true})$ is the ‘log-likelihood’ and $\ln p(F_{true})$ is the ‘log-prior’. The default log-prior encodes prior information known about the model that the log-prior probability is $-\infty$ (impossible) if any of the parameters is outside its limits, and is zero if all the parameters are inside their bounds (uniform prior). The log-likelihood function is $^1$:

$$\ln p(D|F_{true}) = -\frac{1}{2} \sum_n \left( \frac{(g_n(F_{true}) - D_n)^2}{s_n^2} + \ln(2\pi s_n^2) \right)$$

The first term represents the residual ($g$ being the generative model, $D_n$ the data and $s_n$ the measurement uncertainty). This gives $\chi^2$ when summed over all data points. The objective function may also return the log-posterior probability, $\ln p(F_{true}|D)$. Since the default log-prior term is zero, the objective function can also just return the log-likelihood, unless you wish to create a non-uniform prior.

If the objective function returns a float value, this is assumed by default to be the log-posterior probability, *(float_behavior default is ‘posterior’)*. If your objective function returns $\chi^2$, then you should use `float_behavior='chi2'` instead.

By default objective functions may return an ndarray of (possibly weighted) residuals. In this case, use `is_weighted` to select whether these are correctly weighted by measurement uncertainty. Note that this ignores the second term above, so that to calculate a correct log-posterior probability value your objective function should return a float value. With `is_weighted=False` the data uncertainty, $s_n$, will be treated as a nuisance parameter to be marginalized out. This uses strictly positive uncertainty (homoscedasticity) for each data point, $s_n = \exp(\_lnsigma)$. \_lnsigma will be present in `MinimizerResult.params`, as well as `Minimizer.chain` and `nvarys` will be increased by one.

---

1 https://emcee.readthedocs.io
6.8 Minimizer.emcee() - calculating the posterior probability distribution of parameters

Minimizer.emcee() can be used to obtain the posterior probability distribution of parameters, given a set of experimental data. Note that this method does not actually perform a fit at all. Instead, it explores parameter space to determine the probability distributions for the parameters, but without an explicit goal of attempting to refine the solution. It should not be used for fitting, but it is a useful method to more thoroughly explore the parameter space around the solution after a fit has been done and thereby get an improved understanding of the probability distribution for the parameters. It may be able to refine your estimate of the most likely values for a set of parameters, but it will not iteratively find a good solution to the minimization problem. To use this method effectively, you should first use another minimization method and then use this method to explore the parameter space around those best-fit values.

To illustrate this, we’ll use an example problem of fitting data to function of a double exponential decay, including a modest amount of Gaussian noise to the data. Note that this example is the same problem used in An advanced example for evaluating confidence intervals for evaluating confidence intervals in the parameters, which is a similar goal to the one here.

```python
import matplotlib.pyplot as plt
import numpy as np
import lmfit

x = np.linspace(1, 10, 250)
np.random.seed(0)
y = 3.0 * np.exp(-x / 2) - 5.0 * np.exp(-(x - 0.1) / 10.) + 0.1 * np.random.randn(x.size)
plt.plot(x, y, 'b')
plt.show()
```

Create a Parameter set for the initial guesses:
p = lmfit.Parameters()
p.add_many(('a1', 4.), ('a2', 4.), ('t1', 3.), ('t2', 3., True))

def residual(p):
    v = p.valuesdict()
    return v['a1'] * np.exp(-x / v['t1']) + v['a2'] * np.exp(-(x - 0.1) / v['t2']) - y

Solving with `minimize()` gives the Maximum Likelihood solution. Note that we use the robust Nelder-Mead method here. The default Levenberg-Marquardt method seems to have difficulty with exponential decays, though it can refine the solution if starting near the solution:

```python
mi = lmfit.minimize(residual, p, method='nelder', nan_policy='omit')
lmfit.printfuncs.report_fit(mi.params, min_correl=0.5)
```

```
[[Variables]]
 a1: 2.98623689 +/- 0.15010519 (5.03%) (init = 4)
 a2: -4.33525597 +/- 0.11765824 (2.71%) (init = 4)
 t1: 1.30993186 +/- 0.13449656 (10.27%) (init = 3)
 t2: 11.8240752 +/- 0.47172610 (3.99%) (init = 3)
[[Correlations]] (unreported correlations are < 0.500)
 C(a2, t2) = 0.988
 C(a2, t1) = -0.928
 C(t1, t2) = -0.885
 C(a1, t1) = -0.609
```

and plotting the fit using the Maximum Likelihood solution gives the graph below:

```python
plt.plot(x, y, 'b')
plt.plot(x, residual(mi.params) + y, 'r', label='best fit')
plt.legend(loc='best')
plt.show()
```

Note that the fit here (for which the `numdifftools` package is installed) does estimate and report uncertainties in the parameters and correlations for the parameters, and reports the correlation of parameters $a_2$ and $t_2$ to be very
high. As we’ll see, these estimates are pretty good, but when faced with such high correlation, it can be helpful to get the full probability distribution for the parameters. MCMC methods are very good for this.

Furthermore, we wish to deal with the data uncertainty. This is called marginalisation of a nuisance parameter. emcee requires a function that returns the log-posterior probability. The log-posterior probability is a sum of the log-prior probability and log-likelihood functions. The log-prior probability is assumed to be zero if all the parameters are within their bounds and \(-\infty\) if any of the parameters are outside their bounds.

If the objective function returns an array of unweighted residuals (i.e., data-model) as is the case here, you can use `is_weighted=False` as an argument for emcee. In that case, emcee will automatically add/use the `__lnsigma` parameter to estimate the true uncertainty in the data. To place boundaries on this parameter one can do:

```
mi.params.add('__lnsigma', value=np.log(0.1), min=np.log(0.001), max=np.log(2))
```

Now we have to set up the minimizer and do the sampling (again, just to be clear, this is not doing a fit):

```
res = lmfit.minimize(residual, method='emcee', nan_policy='omit', burn=300,
steps=1000, thin=20,
params=mi.params, is_weighted=False, progress=False)
```

As mentioned in the Notes for `Minimizer.emcee()`, the `is_weighted` argument will be ignored if your objective function returns a float instead of an array. For the documentation we set `progress=False`; the default is to print a progress bar to the Terminal if the `tqdm` package is installed.

The success of the method (i.e., whether or not the sampling went well) can be assessed by checking the integrated autocorrelation time and/or the acceptance fraction of the walkers. For this specific example the autocorrelation time could not be estimated because the “chain is too short”. Instead, we plot the acceptance fraction per walker and its mean value suggests that the sampling worked as intended (as a rule of thumb the value should be between 0.2 and 0.5).

```
plt.plot(res.acceptance_fraction, 'b')
plt.xlabel('walker')
plt.ylabel('acceptance fraction')
```

Text(0, 0.5, 'acceptance fraction')
With the results from emcee, we can visualize the posterior distributions for the parameters using the corner package:

```python
import corner
emcee_plot = corner.corner(res.flatchain, labels=res.var_names,
 truths=list(res.params.valuesdict().values()))
```
The values reported in the `MinimizerResult` are the medians of the probability distributions and a 1 σ quantile, estimated as half the difference between the 15.8 and 84.2 percentiles. Printing these values:

```python
print('median of posterior probability distribution')
print('--')
lmfit.report_fit(res.params)
```

```
median of posterior probability distribution
--
[[Variables]]
a1: 2.98945718 +/- 0.14033921 (4.69%) (init = 2.986237)
a2: -4.34687243 +/- 0.12131092 (2.79%) (init = -4.335256)
t1: 1.32883916 +/- 0.13766047 (10.36%) (init = 1.309932)
t2: 11.7836194 +/- 0.47719763 (4.05%) (init = 11.82408)
```

(continues on next page)
You can see that this recovered the right uncertainty level on the data. Note that these values agree pretty well with the results, uncertainties and correlations found by the fit and using numdifftools to estimate the covariance matrix. That is, even though the parameters $a_2, t_1,$ and $t_2$ are all highly correlated and do not display perfectly Gaussian probability distributions, the probability distributions found by explicitly sampling the parameter space are not so far from elliptical as to make the simple (and much faster) estimates from inverting the covariance matrix completely invalid.

As mentioned above, the result from emcee reports the median values, which are not necessarily the same as the Maximum Likelihood Estimate. To obtain the values for the Maximum Likelihood Estimation (MLE) we find the location in the chain with the highest probability:

```python
highest_prob = np.argmax(res.lnprob)
hp_loc = np.unravel_index(highest_prob, res.lnprob.shape)
mle_soln = res.chain[hp_loc]
for i, par in enumerate(p):
 p[par].value = mle_soln[i]

print('Maximum Likelihood Estimation from emcee: ')
print('---')
print('Parameter MLE Value Median Value Uncertainty')
fmt = '{:5s} {:11.5f} {:11.5f} {:11.5f}'.format
for name, param in p.items():
 print(fmt(name, param.value, res.params[name].value, res.params[name].stderr))

Maximum Likelihood Estimation from emcee

Parameter MLE Value Median Value Uncertainty
a1 2.93839 2.98946 0.14034
a2 -4.35274 -4.34687 0.12131
t1 1.34310 1.32884 0.13766
t2 11.78782 11.78362 0.47720
```

Here the difference between MLE and median value are seen to be below 0.5%, and well within the estimated 1-$\sigma$ uncertainty.

Finally, we can use the samples from emcee to work out the 1- and 2-$\sigma$ error estimates.

```python
print('Error estimates from emcee:')
print('--')
print('Parameter -2sigma -1sigma median +1sigma +2sigma')
for name in p.keys():
 quantiles = np.percentile(res.flatchain[name], [2.275, 15.865, 50, 84.135, 97.275])
```
median = quantiles[2]
err_m2 = quantiles[0] - median
err_m1 = quantiles[1] - median
err_p1 = quantiles[3] - median
err_p2 = quantiles[4] - median
fmt = '{:<5s} {:8.4f} {:8.4f} {:8.4f} {:8.4f} {:8.4f}'.format
print(fmt(name, err_m2, err_m1, median, err_p1, err_p2))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>-2sigma</th>
<th>-1sigma</th>
<th>median</th>
<th>+1sigma</th>
<th>+2sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>-0.2656</td>
<td>-0.1362</td>
<td>2.9895</td>
<td>0.1445</td>
<td>0.3141</td>
</tr>
<tr>
<td>a2</td>
<td>-0.3209</td>
<td>-0.1309</td>
<td>-4.3469</td>
<td>0.1118</td>
<td>0.1985</td>
</tr>
<tr>
<td>t1</td>
<td>-0.2377</td>
<td>-0.1305</td>
<td>1.3288</td>
<td>0.1448</td>
<td>0.3278</td>
</tr>
<tr>
<td>t2</td>
<td>-1.0677</td>
<td>-0.4807</td>
<td>11.7836</td>
<td>0.4739</td>
<td>0.8990</td>
</tr>
</tbody>
</table>

And we see that the initial estimates for the 1-σ standard error using numdifftools was not too bad. We’ll return to this example problem in An advanced example for evaluating confidence intervals and use a different method to calculate the 1- and 2-σ error bars.
CHAPTER
SEVEN

MODELING DATA AND CURVE FITTING

A common use of least-squares minimization is curve fitting, where one has a parametrized model function meant to explain some phenomena and wants to adjust the numerical values for the model so that it most closely matches some data. With scipy, such problems are typically solved with scipy.optimize.curve_fit, which is a wrapper around scipy.optimize.leastsq. Since lmfit’s minimize() is also a high-level wrapper around scipy.optimize.leastsq it can be used for curve-fitting problems. While it offers many benefits over scipy.optimize.leastsq, using minimize() for many curve-fitting problems still requires more effort than using scipy.optimize.curve_fit.

The Model class in lmfit provides a simple and flexible approach to curve-fitting problems. Like scipy.optimize.curve_fit, a Model uses a model function – a function that is meant to calculate a model for some phenomenon – and then uses that to best match an array of supplied data. Beyond that similarity, its interface is rather different from scipy.optimize.curve_fit, for example in that it uses Parameters, but also offers several other important advantages.

In addition to allowing you to turn any model function into a curve-fitting method, lmfit also provides canonical definitions for many known line shapes such as Gaussian or Lorentzian peaks and Exponential decays that are widely used in many scientific domains. These are available in the models module that will be discussed in more detail in the next chapter (Built-in Fitting Models in the models module). We mention it here as you may want to consult that list before writing your own model. For now, we focus on turning Python functions into high-level fitting models with the Model class, and using these to fit data.

7.1 Motivation and simple example: Fit data to Gaussian profile

Let’s start with a simple and common example of fitting data to a Gaussian peak. As we will see, there is a built-in GaussianModel class that can help do this, but here we’ll build our own. We start with a simple definition of the model function:

```python
from numpy import exp, linspace, random

def gaussian(x, amp, cen, wid):
 return amp * exp(-(x-cen)**2 / wid)
```

We want to use this function to fit to data \( y(x) \) represented by the arrays \( y \) and \( x \). With scipy.optimize.curve_fit, this would be:

```python
from scipy.optimize import curve_fit

x = linspace(-10, 10, 101)
y = gaussian(x, 2.33, 0.21, 1.51) + random.normal(0, 0.2, x.size)

init_vals = [1, 0, 1] # for [amp, cen, wid]
best_vals, covar = curve_fit(gaussian, x, y, p0=init_vals)
```
That is, we create data, make an initial guess of the model values, and run `scipy.optimize.curve_fit` with the model function, data arrays, and initial guesses. The results returned are the optimal values for the parameters and the covariance matrix. It’s simple and useful, but it misses the benefits of lmfit.

With lmfit, we create a `Model` that wraps the `gaussian` model function, which automatically generates the appropriate residual function, and determines the corresponding parameter names from the function signature itself:

```python
from lmfit import Model

gmodel = Model(gaussian)
print('parameter names: {}'.format(gmodel.param_names))
print('independent variables: {}'.format(gmodel.independent_vars))
```

```
parameter names: ['amp', 'cen', 'wid']
independent variables: ['x']
```

As you can see, the Model `gmodel` determined the names of the parameters and the independent variables. By default, the first argument of the function is taken as the independent variable, held in `independent_vars`, and the rest of the functions positional arguments (and, in certain cases, keyword arguments – see below) are used for Parameter names. Thus, for the `gaussian` function above, the independent variable is `x`, and the parameters are named `amp`, `cen`, and `wid`, and – all taken directly from the signature of the model function. As we will see below, you can modify the default assignment of independent variable / arguments and specify yourself what the independent variable is and which function arguments should be identified as parameter names.

The Parameters are `not` created when the model is created. The model knows what the parameters should be named, but nothing about the scale and range of your data. You will normally have to make these parameters and assign initial values and other attributes. To help you do this, each model has a `make_params()` method that will generate parameters with the expected names:

```python
params = gmodel.make_params()
```

This creates the `Parameters` but does not automatically give them initial values since it has no idea what the scale should be. You can set initial values for parameters with keyword arguments to `make_params()`:

```python
params = gmodel.make_params(cen=0.3, amp=3, wid=1.25)
```

or assign them (and other parameter properties) after the `Parameters` class has been created.

A `Model` has several methods associated with it. For example, one can use the `eval()` method to evaluate the model or the `fit()` method to fit data to this model with a Parameter object. Both of these methods can take explicit keyword arguments for the parameter values. For example, one could use `eval()` to calculate the predicted function:

```python
x_eval = linspace(0, 10, 201)
y_eval = gmodel.eval(params, x=x_eval)
```

or with:

```python
y_eval = gmodel.eval(x=x_eval, cen=6.5, amp=100, wid=2.0)
```

Admittedly, this a slightly long-winded way to calculate a Gaussian function, given that you could have called your `gaussian` function directly. But now that the model is set up, we can use its `fit()` method to fit this model to data, as with:

```python
result = gmodel.fit(y, params, x=x)
```

or with:
```python
result = gmodel.fit(y, x=x, cen=0.5, amp=10, wid=2.0)
```

Putting everything together, included in the `examples` folder with the source code, is:

```python
<examples/doc_model_gaussian.py>
import matplotlib.pyplot as plt
from numpy import exp, loadtxt, pi, sqrt
from lmfit import Model

data = loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]

def gaussian(x, amp, cen, wid):
 """1-d gaussian: gaussian(x, amp, cen, wid)"
 return (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2))

gmodel = Model(gaussian)
result = gmodel.fit(y, x=x, amp=5, cen=5, wid=1)
print(result.fit_report())
plt.plot(x, y, 'bo')
plt.plot(x, result.init_fit, 'k--', label='initial fit')
plt.plot(x, result.best_fit, 'r-', label='best fit')
plt.legend(loc='best')
plt.show()
<end examples/doc_model_gaussian.py>
```

which is pretty compact and to the point. The returned `result` will be a `ModelResult` object. As we will see below, this has many components, including a `fit_report()` method, which will show:

```
[[Model]]
 Model(gaussian)
[[Fit Statistics]]
fitting method = leastsq
function evals = 33
data points = 101
variables = 3
chi-square = 3.40883599
reduced chi-square = 0.03478404
Akaike info crit = -336.263713
Bayesian info crit = -328.418352
[[Variables]]
amp: 8.88021830 +/- 0.11359492 (1.28%) (init = 5)
cen: 5.65866102 +/- 0.01030495 (0.18%) (init = 5)
wid: 0.69765468 +/- 0.01030495 (1.48%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
C(amp, wid) = 0.577
```

As the script shows, the result will also have `init_fit` for the fit with the initial parameter values and a `best_fit` for the fit with the best fit parameter values. These can be used to generate the following plot:

7.1. Motivation and simple example: Fit data to Gaussian profile
which shows the data in blue dots, the best fit as a solid red line, and the initial fit as a dashed black line.

Note that the model fitting was really performed with:

```python
gmodel = Model(gaussian)
result = gmodel.fit(y, params, x=x, amp=5, cen=5, wid=1)
```

These lines clearly express that we want to turn the `gaussian` function into a fitting model, and then fit the \( y(x) \) data to this model, starting with values of 5 for `amp`, 5 for `cen` and 1 for `wid`. In addition, all the other features of Lmfit are included: `Parameters` can have bounds and constraints and the result is a rich object that can be reused to explore the model fit in detail.

### 7.2 The Model class

The `Model` class provides a general way to wrap a pre-defined function as a fitting model.

```python
class Model(func, independent_vars=None, param_names=None, nan_policy='raise', prefix='', name=None, **kws)
 Create a model from a user-supplied model function.
```

The model function will normally take an independent variable (generally, the first argument) and a series of arguments that are meant to be parameters for the model. It will return an array of data to model some data as for a curve-fitting problem.

**Parameters**

- `func (callable)` – Function to be wrapped.
- `independent_vars (list of str, optional)` – Arguments to `func` that are independent variables (default is `None`).
- `param_names (list of str, optional)` – Names of arguments to `func` that are to be made into parameters (default is `None`).
• `nan_policy` ("raise", "propagate", "omit"), optional – How to handle NaN and missing values in data. See Notes below.

• `prefix`(str, optional) – Prefix used for the model.

• `name`(str, optional) – Name for the model. When None (default) the name is the same as the model function (`func`).

• `**kws`(dict, optional) – Additional keyword arguments to pass to model function.

Notes

1. Parameter names are inferred from the function arguments, and a residual function is automatically constructed.
2. The model function must return an array that will be the same size as the data being modeled.
3. `nan_policy` sets what to do when a NaN or missing value is seen in the data. Should be one of:
   - "raise": raise a `ValueError` (default)
   - "propagate": do nothing
   - "omit": drop missing data

Examples

The model function will normally take an independent variable (generally, the first argument) and a series of arguments that are meant to be parameters for the model. Thus, a simple peak using a Gaussian defined as:

```python
>>> import numpy as np
>>> def gaussian(x, amp, cen, wid):
... return amp * np.exp(-(x-cen)**2 / wid)
```

can be turned into a Model with:

```python
>>> gmodel = Model(gaussian)
```

this will automatically discover the names of the independent variables and parameters:

```python
>>> print(gmodel.param_names, gmodel.independent_vars)
['amp', 'cen', 'wid'], ['x']
```

7.2.1 Model class Methods

Model.eval (params=None, **kwargs)
Evaluate the model with supplied parameters and keyword arguments.

Parameters

• `params`(Parameters, optional) – Parameters to use in Model.

• `**kwargs`(optional) – Additional keyword arguments to pass to model function.

Returns Value of model given the parameters and other arguments.

Return type `numpy.ndarray`
Notes

1. if `params` is None, the values for all parameters are expected to be provided as keyword arguments. If `params` is given, and a keyword argument for a parameter value is also given, the keyword argument will be used.

2. all non-parameter arguments for the model function, including all the independent variables will need to be passed in using keyword arguments.

```python
Model.fit(data, params=None, weights=None, method='leastsq', iter_cb=None, scale_covar=True, verbose=False, fit_kws=None, nan_policy=None, calc_covar=True, max_nfev=None, **kwargs)
```

Fit the model to the data using the supplied Parameters.

Parameters

- `data` (array_like) – Array of data to be fit.
- `params` (Parameters, optional) – Parameters to use in fit (default is None).
- `weights` (array_like, optional) – Weights to use for the calculation of the fit residual (default is None). Must have the same size as `data`.
- `method` (str, optional) – Name of fitting method to use (default is 'leastsq').
- `iter_cb` (callable, optional) – Callback function to call at each iteration (default is None).
- `scale_covar` (bool, optional) – Whether to automatically scale the covariance matrix when calculating uncertainties (default is True).
- `verbose` (bool, optional) – Whether to print a message when a new parameter is added because of a hint (default is True).
- `fit_kws` (dict, optional) – Options to pass to the minimizer being used.
- `nan_policy` (['raise', 'propagate', 'omit'], optional) – What to do when encountering NaNs when fitting Model.
- `calc_covar` (bool, optional) – Whether to calculate the covariance matrix (default is True) for solvers other than 'leastsq' and 'least_squares'. Requires the `numdifftools` package to be installed.
- `max_nfev` (int or None, optional) – Maximum number of function evaluations (default is None). The default value depends on the fitting method.
- `**kwargs` (optional) – Arguments to pass to the model function, possibly overriding parameters.

Returns

- Return type `ModelResult`

Notes

1. if `params` is None, the values for all parameters are expected to be provided as keyword arguments. If `params` is given, and a keyword argument for a parameter value is also given, the keyword argument will be used.

2. all non-parameter arguments for the model function, including all the independent variables will need to be passed in using keyword arguments.

3. Parameters (however passed in), are copied on input, so the original Parameter objects are unchanged, and the updated values are in the returned `ModelResult`. 
Examples

Take \( t \) to be the independent variable and \( \text{data} \) to be the curve we will fit. Use keyword arguments to set initial guesses:

```python
>>> result = my_model.fit(data, tau=5, N=3, t=t)
```

Or, for more control, pass a Parameters object.

```python
>>> result = my_model.fit(data, params, t=t)
```

Keyword arguments override Parameters.

```python
>>> result = my_model.fit(data, params, tau=5, t=t)
```

Model.guess(data, **kws)

Guess starting values for the parameters of a Model.

This is not implemented for all models, but is available for many of the built-in models.

Parameters

- **data** (array_like) – Array of data to use to guess parameter values.
- ****kws (optional) – Additional keyword arguments, passed to model function.

Returns Initial, guessed values for the parameters of a Model.

Return type Parameters

Raises NotImplemented Error – If the guess method is not implemented for a Model.

Notes

Should be implemented for each model subclass to run self.make_params(), update starting values and return a Parameters object.

Model.make_params(verbos=False, **kwargs)

Create a Parameters object for a Model.

Parameters

- **verbos** (bool, optional) – Whether to print out messages (default is False).
- ****kwargs (optional) – Parameter names and initial values.

Returns params – Parameters object for the Model.

Return type Parameters

Notes

1. The parameters may or may not have decent initial values for each parameter.
2. This applies any default values or parameter hints that may have been set.

Model.set_param_hint(name, **kwargs)

Set hints to use when creating parameters with make_params().

This is especially convenient for setting initial values. The name can include the models prefix or not. The hint given can also include optional bounds and constraints (value, vary, min, max, expr), which will be used by make_params() when building default parameters.
Parameters

- **name** *(str)* – Parameter name.
- **kwargs** *(optional)* – Arbitrary keyword arguments, needs to be a Parameter attribute. Can be any of the following:
  - **value** *(float, optional)* Numerical Parameter value.
  - **vary** *(bool, optional)* Whether the Parameter is varied during a fit (default is True).
  - **min** *(float, optional)* Lower bound for value (default is \(-\text{numpy.inf}\), no lower bound).
  - **max** *(float, optional)* Upper bound for value (default is \(\text{numpy.inf}\), no upper bound).
  - **expr** *(str, optional)* Mathematical expression used to constrain the value during the fit.

**Example**

```python
>>> model = GaussianModel()
>>> model.set_param_hint('sigma', min=0)
```

See *Using parameter hints*.

**Model**. `print_param_hints` *(colwidth=8)*

Print a nicely aligned text-table of parameter hints.

- **Parameters** *(colwidth) – Width of each column, except for first and last columns.*

### 7.2.2 Model class Attributes

**func**

The model function used to calculate the model.

**independent_vars**

List of strings for names of the independent variables.

**nan_policy**

Describes what to do for NaNs that indicate missing values in the data. The choices are:

- **'raise'**: Raise a `ValueError` (default)
- **'propagate'**: Do not check for NaNs or missing values. The fit will try to ignore them.
- **'omit'**: Remove NaNs or missing observations in data. If pandas is installed, `pandas.isnull()` is used, otherwise `numpy.isnan()` is used.

**name**

Name of the model, used only in the string representation of the model. By default this will be taken from the model function.

**opts**

Extra keyword arguments to pass to model function. Normally this will be determined internally and should not be changed.

**param_hints**

Dictionary of parameter hints. See *Using parameter hints*.

**param_names**

List of strings of parameter names.
prefix
Prefix used for name-mangling of parameter names. The default is ''. If a particular `Model` has arguments `amplitude`, `center`, and `sigma`, these would become the parameter names. Using a prefix of 'g1_' would convert these parameter names to `g1_amplitude`, `g1_center`, and `g1_sigma`. This can be essential to avoid name collision in composite models.

7.2.3 Determining parameter names and independent variables for a function

The `Model` created from the supplied function `func` will create a `Parameters` object, and names are inferred from the function arguments, and a residual function is automatically constructed.

By default, the independent variable is taken as the first argument to the function. You can, of course, explicitly set this, and will need to do so if the independent variable is not first in the list, or if there is actually more than one independent variable.

If not specified, Parameters are constructed from all positional arguments and all keyword arguments that have a default value that is numerical, except the independent variable, of course. Importantly, the Parameters can be modified after creation. In fact, you will have to do this because none of the parameters have valid initial values. In addition, one can place bounds and constraints on Parameters, or fix their values.

7.2.4 Explicitly specifying `independent_vars`

As we saw for the Gaussian example above, creating a `Model` from a function is fairly easy. Let’s try another one:

```python
import numpy as np
from lmfit import Model

def decay(t, tau, N):
 return N*np.exp(-t/tau)

decay_model = Model(decay)
print('independent variables: {}'.format(decay_model.independent_vars))
params = decay_model.make_params()
print('Parameters: ')
for pname, par in params.items():
 print(pname, par)

independent variables: ['t']
Parameters:
tau <Parameter 'tau', value=-inf, bounds=[-inf:inf]>
N <Parameter 'N', value=-inf, bounds=[-inf:inf]>
```

Here, `t` is assumed to be the independent variable because it is the first argument to the function. The other function arguments are used to create parameters for the model.

If you want `tau` to be the independent variable in the above example, you can say so:

```python
decay_model = Model(decay, independent_vars=['tau'])
print('independent variables: {}'.format(decay_model.independent_vars))
params = decay_model.make_params()
```

(continues on next page)
print('Parameters:
for pname, par in params.items():
    print(pname, par)

Parameters:

7.2.5 Functions with keyword arguments

If the model function had keyword parameters, these would be turned into Parameters if the supplied default value was a valid number (but not None, True, or False).

def decay2(t, tau, N=10, check_positive=False):
    if check_small:
        arg = abs(t)/max(1.e-9, abs(tau))
    else:
        arg = t/tau
    return N*np.exp(arg)

mod = Model(decay2)
params = mod.make_params()
print('Parameters:
for pname, par in params.items():
    print(pname, par)

Parameters:

Here, even though N is a keyword argument to the function, it is turned into a parameter, with the default numerical value as its initial value. By default, it is permitted to be varied in the fit – the 10 is taken as an initial value, not a fixed value. On the other hand, the check_positive keyword argument, was not converted to a parameter because it has a boolean default value. In some sense, check_positive becomes like an independent variable to the model. However, because it has a default value it is not required to be given for each model evaluation or fit, as independent variables are.
7.2.6 Defining a prefix for the Parameters

As we will see in the next chapter when combining models, it is sometimes necessary to decorate the parameter names in the model, but still have them be correctly used in the underlying model function. This would be necessary, for example, if two parameters in a composite model (see Composite Models: adding (or multiplying) Models or examples in the next chapter) would have the same name. To avoid this, we can add a prefix to the model which will automatically do this mapping for us.

```python
def myfunc(x, amplitude=1, center=0, sigma=1):
 # function definition, for now just 'pass'
 pass

mod = Model(myfunc, prefix='f1_')
params = mod.make_params()
print('Parameters:)
for pname, par in params.items():
 print(pname, par)
```

Parameters:
f1_amplitude <Parameter 'f1_amplitude', value=1, bounds=[-inf:inf]>
f1_center <Parameter 'f1_center', value=0, bounds=[-inf:inf]>
f1_sigma <Parameter 'f1_sigma', value=1, bounds=[-inf:inf]>

You would refer to these parameters as f1_amplitude and so forth, and the model will know to map these to the amplitude argument of myfunc.

7.2.7 Initializing model parameters

As mentioned above, the parameters created by `Model.make_params()` are generally created with invalid initial values of None. These values must be initialized in order for the model to be evaluated or used in a fit. There are four different ways to do this initialization that can be used in any combination:

1. You can supply initial values in the definition of the model function.
2. You can initialize the parameters when creating parameters with `Model.make_params()`.
3. You can give parameter hints with `Model.set_param_hint()`.
4. You can supply initial values for the parameters when you use the `Model.eval()` or `Model.fit()` methods.

Of course these methods can be mixed, allowing you to overwrite initial values at any point in the process of defining and using the model.

**Initializing values in the function definition**

To supply initial values for parameters in the definition of the model function, you can simply supply a default value:

```python
def myfunc(x, a=1, b=0):
 return a*x + 10*a - b
```

instead of using:

```python
def myfunc(x, a, b):
 return a*x + 10*a - b
```
This has the advantage of working at the function level – all parameters with keywords can be treated as options. It also means that some default initial value will always be available for the parameter.

**Initializing values with `Model.make_params()`**

When creating parameters with `Model.make_params()` you can specify initial values. To do this, use keyword arguments for the parameter names and initial values:

```python
mod = Model(myfunc)
pars = mod.make_params(a=3, b=0.5)
```

**Initializing values by setting parameter hints**

After a model has been created, but prior to creating parameters with `Model.make_params()`, you can set parameter hints. These allows you to set not only a default initial value but also to set other parameter attributes controlling bounds, whether it is varied in the fit, or a constraint expression. To set a parameter hint, you can use `Model.set_param_hint()`, as with:

```python
mod = Model(myfunc)
mod.set_param_hint('a', value=1.0)
mod.set_param_hint('b', value=0.3, min=0, max=1.0)
pars = mod.make_params()
```

Parameter hints are discussed in more detail in section *Using parameter hints*.

**Initializing values when using a model**

Finally, you can explicitly supply initial values when using a model. That is, as with `Model.make_params()`, you can include values as keyword arguments to either the `Model.eval()` or `Model.fit()` methods:

```python
x = linspace(0, 10, 100)
y_eval = mod.eval(x=x, a=7.0, b=-2.0)
y_sim = y_eval + random.normal(0, 0.2, x.size)
out = mod.fit(y_sim, pars, x=x, a=3.0, b=0.0)
```

These approaches to initialization provide many opportunities for setting initial values for parameters. The methods can be combined, so that you can set parameter hints but then change the initial value explicitly with `Model.fit()`.

**7.2.8 Using parameter hints**

After a model has been created, you can give it hints for how to create parameters with `Model.make_params()`. This allows you to set not only a default initial value but also to set other parameter attributes controlling bounds, whether it is varied in the fit, or a constraint expression. To set a parameter hint, you can use `Model.set_param_hint()`, as with:

```python
mod = Model(myfunc)
mod.set_param_hint('a', value=1.0)
mod.set_param_hint('b', value=0.3, min=0, max=1.0)
```

Parameter hints are stored in a model’s `param_hints` attribute, which is simply a nested dictionary:
print('Parameter hints:')
for pname, par in mod.param_hints.items():
    print(pname, par)

Parameter hints:
a OrderedDict([('value', 1.0)])
b OrderedDict([('value', 0.3), ('min', 0), ('max', 1.0)])

You can change this dictionary directly, or with the Model.set_param_hint() method. Either way, these parameter hints are used by Model.make_params() when making parameters.

An important feature of parameter hints is that you can force the creation of new parameters with parameter hints. This can be useful to make derived parameters with constraint expressions. For example to get the full-width at half maximum of a Gaussian model, one could use a parameter hint of:

```python
mod = Model(gaussian)
mod.set_param_hint('fwhm', expr='2.3548*sigma')
```

### 7.2.9 Saving and Loading Models

New in version 0.9.8.

It is sometimes desirable to save a Model for later use outside of the code used to define the model. Lmfit provides a save_model() function that will save a Model to a file. There is also a companion load_model() function that can read this file and reconstruct a Model from it.

Saving a model turns out to be somewhat challenging. The main issue is that Python is not normally able to serialize a function (such as the model function making up the heart of the Model) in a way that can be reconstructed into a callable Python object. The dill package can sometimes serialize functions, but with the limitation that it can be used only in the same version of Python. In addition, class methods used as model functions will not retain the rest of the class attributes and methods, and so may not be usable. With all those warnings, it should be emphasized that if you are willing to save or reuse the definition of the model function as Python code, then saving the Parameters and rest of the components that make up a model presents no problem.

If the dill package is installed, the model function will be saved using it. But because saving the model function is not always reliable, saving a model will always save the name of the model function. The load_model() takes an optional funcdefs argument that can contain a dictionary of function definitions with the function names as keys and function objects as values. If one of the dictionary keys matches the saved name, the corresponding function object will be used as the model function. With this approach, if you save a model and can provide the code used for the model function, the model can be saved and reliably reloaded and used.

```python
save_model (model, fname)
Save a Model to a file.

Parameters

- model (Model) – Model to be saved.
- fname (str) – Name of file for saved Model.

load_model (fname, funcdefs=None)
Load a saved Model from a file.

Parameters

- fname (str) – Name of file containing saved Model.
- funcdefs (dict, optional) – Dictionary of custom function names and definitions.
```
Returns Model object loaded from file.

Return type Model

As a simple example, one can save a model as:

```python
<examples/doc_model_savemodel.py>
import numpy as np
from lmfit.model import Model, save_model

def mysine(x, amp, freq, shift):
 return amp * np.sin(x*freq + shift)

sinemodel = Model(mysine)
pars = sinemodel.make_params(amp=1, freq=0.25, shift=0)
save_model(sinemodel, 'sinemodel.sav')
<end examples/doc_model_savemodel.py>
```

To load that later, one might do:

```python
<examples/doc_model_loadmodel.py>
import matplotlib.pyplot as plt
import numpy as np
from lmfit.model import load_model

def mysine(x, amp, freq, shift):
 return amp * np.sin(x*freq + shift)

data = np.loadtxt('sinedata.dat')
x = data[:, 0]
y = data[:, 1]

model = load_model('sinemodel.sav', funcdefs={'mysine': mysine})
pars = model.make_params(amp=3, freq=0.52, shift=0)
pars['shift'].max = 1
pars['shift'].min = -1
pars['amp'].min = 0.0

result = model.fit(y, pars, x=x)
print(result.fit_report())
plt.plot(x, y, 'bo')
plt.plot(x, result.best_fit, 'r-')
plt.show()
<end examples/doc_model_loadmodel.py>
```

See also Saving and Loading ModelResults.
7.3 The ModelResult class

A ModelResult (which had been called ModelFit prior to version 0.9) is the object returned by Model.fit(). It is a subclass of Minimizer, and so contains many of the fit results. Of course, it knows the Model and the set of Parameters used in the fit, and it has methods to evaluate the model, to fit the data (or re-fit the data with changes to the parameters, or fit with different or modified data) and to print out a report for that fit.

While a Model encapsulates your model function, it is fairly abstract and does not contain the parameters or data used in a particular fit. A ModelResult does contain parameters and data as well as methods to alter and re-do fits. Thus the Model is the idealized model while the ModelResult is the messier, more complex (but perhaps more useful) object that represents a fit with a set of parameters to data with a model.

A ModelResult has several attributes holding values for fit results, and several methods for working with fits. These include statistics inherited from Minimizer useful for comparing different models, including chisqr, redchi, aic, and bic.

class ModelResult(model, params, data=None, weights=None, method='leastsq', fcn_args=None, fcn_kws=None, iter_cb=None, scale_covar=True, nan_policy='raise', calc_covar=True, max_nfev=None, **fit_kws)

Result from the Model fit.

This has many attributes and methods for viewing and working with the results of a fit using Model. It inherits from Minimizer, so that it can be used to modify and re-run the fit for the Model.

Parameters

- model (Model) – Model to use.
- params (Parameters) – Parameters with initial values for model.
- data (array_like, optional) – Data to be modeled.
- weights (array_like, optional) – Weights to multiply (data-model) for fit residual.
- method (str, optional) – Name of minimization method to use (default is ‘leastsq’).
- fcn_args (sequence, optional) – Positional arguments to send to model function.
- fcn_dict (dict, optional) – Keyword arguments to send to model function.
- iter_cb (callable, optional) – Function to call on each iteration of fit.
- scale_covar (bool, optional) – Whether to scale covariance matrix for uncertainty evaluation.
- nan_policy (['raise', 'propagate', 'omit'], optional) – What to do when encountering NaNs when fitting Model.
- calc_covar (bool, optional) – Whether to calculate the covariance matrix (default is True) for solvers other than ‘leastsq’ and ‘least_squares’. Requires the numdifftools package to be installed.
- max_nfev (int or None, optional) – Maximum number of function evaluations (default is None). The default value depends on the fitting method.
- **fit_kws (optional) – Keyword arguments to send to minimization routine.
7.3.1 ModelResult methods

ModelResult.eval (params=None, **kwargs)
Evaluate model function.

Parameters
- params (Parameters, optional) – Parameters to use.
- **kwargs (optional) – Options to send to Model.eval().

Returns Array for evaluated model.
Return type numpy.ndarray

ModelResult.eval_components (params=None, **kwargs)
Evaluate each component of a composite model function.

Parameters
- params (Parameters, optional) – Parameters, defaults to ModelResult.params.
- **kwargs (optional) – Keyword arguments to pass to model function.

Returns Keys are prefixes of component models, and values are the estimated model value for each component of the model.
Return type OrderedDict

ModelResult.fit (data=None, params=None, weights=None, method=None, nan_policy=None, **kwargs)
Re-perform fit for a Model, given data and params.

Parameters
- data (array_like, optional) – Data to be modeled.
- params (Parameters, optional) – Parameters with initial values for model.
- weights (array_like, optional) – Weights to multiply (data-model) for fit residual.
- method (str, optional) – Name of minimization method to use (default is ‘leastsq’).
- nan_policy (str, optional) – Name of minimization method to use (default is ‘raise’, ‘propagate’, ‘omit’), optional – What to do when encountering NaNs when fitting Model.
- **kwargs (optional) – Keyword arguments to send to minimization routine.

ModelResult.fit_report (modelpars=None, show_correl=True, min_correl=0.1, sort_pars=False)
Return a printable fit report.

The report contains fit statistics and best-fit values with uncertainties and correlations.

Parameters
- modelpars (Parameters, optional) – Known Model Parameters.
- show_correl (bool, optional) – Whether to show list of sorted correlations (default is True).
- min_correl (float, optional) – Smallest correlation in absolute value to show (default is 0.1).
- sort_pars (callable, optional) – Whether to show parameter names sorted in alphanumerical order (default is False). If False, then the parameters will be listed in the
order as they were added to the Parameters dictionary. If callable, then this (one argument) function is used to extract a comparison key from each list element.

**Returns** Multi-line text of fit report.

**Return type** str

**ModelResult.conf_interval(**kwargs)**

Calculate the confidence intervals for the variable parameters.

Confidence intervals are calculated using the `confidence.conf_interval()` function and keyword arguments (**kwargs) are passed to that function. The result is stored in the `ci_out` attribute so that it can be accessed without recalculating them.

**ModelResult.ci_report(with_offset=True, ndigits=5, **kwargs)**

Return a formatted text report of the confidence intervals.

**Parameters**

- `with_offset` (bool, optional) – Whether to subtract best value from all other values (default is True).
- `ndigits` (int, optional) – Number of significant digits to show (default is 5).
- `**kwargs` (optional) – Keyword arguments that are passed to the `conf_interval` function.

**Returns** Text of formatted report on confidence intervals.

**Return type** str

**ModelResult.eval_uncertainty(**kwargs)**

Evaluate the uncertainty of the model function.

This can be used to give confidence bands for the model from the uncertainties in the best-fit parameters.

**Parameters**

- `params` (Parameters, optional) – Parameters, defaults to `ModelResult.params`.
- `sigma` (float, optional) – Confidence level, i.e. how many sigma (default is 1).
- `**kwargs` (optional) – Values of options, independent variables, etcetera.

**Returns** Uncertainty at each value of the model.

**Return type** numpy.ndarray

**Notes**

1. This is based on the excellent and clear example from https://www.astro.rug.nl/software/kapteyn/kmpftuttutorial.html#confidence-and-prediction-intervals, which references the original work of: J. Wolberg, Data Analysis Using the Method of Least Squares, 2006, Springer

2. The value of `sigma` is number of `sigma` values, and is converted to a probability. Values of 1, 2, or 3 give probabilities of 0.6827, 0.9545, and 0.9973, respectively. If the `sigma` value is < 1, it is interpreted as the probability itself. That is, `sigma=1` and `sigma=0.6827` will give the same results, within precision errors.
Examples

```python
>>> out = model.fit(data, params, x=x)
>>> dely = out.eval_uncertainty(x=x)
>>> plt.plot(x, data)
>>> plt.plot(x, out.best_fit)
>>> plt.fill_between(x, out.best_fit-dely,
... out.best_fit+dely, color='#888888')
```

`ModelResult.plot(datafmt='o', fitfmt='-', initfmt='--', xlabel=None, ylabel=None, yerr=None, numpoints=None, fig=None, data_kws=None, fit_kws=None, init_kws=None, ax_res_kws=None, ax_fit_kws=None, fig_kws=None, show_init=False, parse_complex='abs')`

Plot the fit results and residuals using matplotlib.

The method will produce a matplotlib figure (if package available) with both results of the fit and the residuals plotted. If the fit model included weights, errorbars will also be plotted. To show the initial conditions for the fit, pass the argument `show_init=True`.

**Parameters**

- **datafmt** (`str`, optional) – Matplotlib format string for data points.
- **fitfmt** (`str`, optional) – Matplotlib format string for fitted curve.
- **initfmt** (`str`, optional) – Matplotlib format string for initial conditions for the fit.
- **xlabel** (`str`, optional) – Matplotlib format string for labeling the x-axis.
- **ylabel** (`str`, optional) – Matplotlib format string for labeling the y-axis.
- **yerr** (`numpy.ndarray`, optional) – Array of uncertainties for data array.
- **numpoints** (`int`, optional) – If provided, the final and initial fit curves are evaluated not only at data points, but refined to contain `numpoints` points in total.
- **fig** (`matplotlib.figure.Figure`, optional) – The figure to plot on. The default is None, which means use the current pyplot figure or create one if there is none.
- **data_kws** (`dict`, optional) – Keyword arguments passed to the plot function for data points.
- **fit_kws** (`dict`, optional) – Keyword arguments passed to the plot function for fitted curve.
- **init_kws** (`dict`, optional) – Keyword arguments passed to the plot function for the initial conditions of the fit.
- **ax_res_kws** (`dict`, optional) – Keyword arguments for the axes for the residuals plot.
- **ax_fit_kws** (`dict`, optional) – Keyword arguments for the axes for the fit plot.
- **fig_kws** (`dict`, optional) – Keyword arguments for a new figure, if a new one is created.
- **show_init** (`bool`, optional) – Whether to show the initial conditions for the fit (default is False).
- **parse_complex** (`{'abs', 'real', 'imag', 'angle'}`, optional) – How to reduce complex data for plotting. Options are one of: ‘abs’ (default), ‘real’, ‘imag’, or ‘angle’, which correspond to the NumPy functions with the same name.

**Returns** A tuple with matplotlib’s Figure and GridSpec objects.
Return type  tuple

See also:

ModelResult.plot_fit  Plot the fit results using matplotlib.
ModelResult.plot_residuals  Plot the fit residuals using matplotlib.

Notes

The method combines ModelResult.plot_fit and ModelResult.plot_residuals.

If yerr is specified or if the fit model included weights, then matplotlib.axes.Axes.errorbar is used to plot the data. If yerr is not specified and the fit includes weights, yerr set to 1/self.weights.

If model returns complex data, yerr is treated the same way that weights are in this case.

If fig is None then matplotlib.pyplot.figure(**fig_kws) is called, otherwise fig_kws is ignored.

ModelResult.plot_fit (ax=None, datafmt='o', fitfmt='-', initfmt='--', xlabel=None, ylabel=None, yerr=None, numpoints=None, data_kws=None, fit_kws=None, init_kws=None, ax_kws=None, show_init=False, parse_complex='abs')

Plot the fit results using matplotlib, if available.

The plot will include the data points, the initial fit curve (optional, with show_init=True), and the best-fit curve. If the fit model included weights or if yerr is specified, errorbars will also be plotted.

Parameters

- **ax** (matplotlib.axes.Axes, optional) – The axes to plot on. The default in None, which means use the current pyplot axis or create one if there is none.
- **datafmt** (str, optional) – Matplotlib format string for data points.
- **fitfmt** (str, optional) – Matplotlib format string for fitted curve.
- **initfmt** (str, optional) – Matplotlib format string for initial conditions for the fit.
- **xlabel** (str, optional) – Matplotlib format string for labeling the x-axis.
- **ylabel** (str, optional) – Matplotlib format string for labeling the y-axis.
- **yerr** (numpy.ndarray, optional) – Array of uncertainties for data array.
- **numpoints** (int, optional) – If provided, the final and initial fit curves are evaluated not only at data points, but refined to contain numpoints points in total.
- **data_kws** (dict, optional) – Keyword arguments passed to the plot function for data points.
- **fit_kws** (dict, optional) – Keyword arguments passed to the plot function for fitted curve.
- **init_kws** (dict, optional) – Keyword arguments passed to the plot function for the initial conditions of the fit.
- **ax_kws** (dict, optional) – Keyword arguments for a new axis, if a new one is created.
- **show_init** (bool, optional) – Whether to show the initial conditions for the fit (default is False).
• **parse_complex** (\{'abs', 'real', 'imag', 'angle'\}, optional) – How to reduce complex data for plotting. Options are one of: ‘abs’ (default), ‘real’, ‘imag’, or ‘angle’, which correspond to the NumPy functions with the same name.

**Returns**

Return type: matplotlib.axes.Axes

**See also:**

ModelResult.plot_residuals Plot the fit residuals using matplotlib.

ModelResult.plot Plot the fit results and residuals using matplotlib.

**Notes**

For details about plot format strings and keyword arguments see documentation of matplotlib.axes.Axes.plot.

If `yerr` is specified or if the fit model included weights, then matplotlib.axes.Axes.errorbar is used to plot the data. If `yerr` is not specified and the fit includes weights, `yerr` set to `1/self.weights`.

If model returns complex data, `yerr` is treated the same way that weights are in this case.

If `ax` is None then matplotlib.pyplot.gca(**ax_kws) is called.

ModelResult.plot_residuals (ax=None, datafmt=’o’, yerr=None, data_kws=None, fit_kws=None, ax_kws=None, parse_complex=’abs’) Plot the fit residuals using matplotlib, if available.

If `yerr` is supplied or if the model included weights, errorbars will also be plotted.

**Parameters**

- **ax** (matplotlib.axes.Axes, optional) – The axes to plot on. The default in None, which means use the current pyplot axis or create one if there is none.

- **datafmt** (str, optional) – Matplotlib format string for data points.

- **yerr** (numpy.ndarray, optional) – Array of uncertainties for data array.

- **data_kws** (dict, optional) – Keyword arguments passed to the plot function for data points.

- **fit_kws** (dict, optional) – Keyword arguments passed to the plot function for fitted curve.

- **ax_kws** (dict, optional) – Keyword arguments for a new axis, if a new one is created.

- **parse_complex** (\{'abs', 'real', 'imag', 'angle'\}, optional) – How to reduce complex data for plotting. Options are one of: ‘abs’ (default), ‘real’, ‘imag’, or ‘angle’, which correspond to the NumPy functions with the same name.

**Returns**

Return type: matplotlib.axes.Axes

**See also:**

ModelResult.plot_fit Plot the fit results using matplotlib.

ModelResult.plot Plot the fit results and residuals using matplotlib.
Notes

For details about plot format strings and keyword arguments see documentation of matplotlib.axes.Axes.plot.

If `yerr` is specified or if the fit model included weights, then matplotlib.axes.Axes.errorbar is used to plot the data. If `yerr` is not specified and the fit includes weights, `yerr` set to 1/self.weights.

If model returns complex data, `yerr` is treated the same way that weights are in this case.

If `ax` is None then matplotlib.pyplot.gca(**ax_kws) is called.

7.3.2 ModelResult attributes

aic
Floating point best-fit Akaike Information Criterion statistic (see MinimizerResult – the optimization result).

best_fit
numpy.ndarray result of model function, evaluated at provided independent variables and with best-fit parameters.

best_values
Dictionary with parameter names as keys, and best-fit values as values.

bic
Floating point best-fit Bayesian Information Criterion statistic (see MinimizerResult – the optimization result).

chisqr
Floating point best-fit chi-square statistic (see MinimizerResult – the optimization result).

ci_out
Confidence interval data (see Calculation of confidence intervals) or None if the confidence intervals have not been calculated.

covar
numpy.ndarray (square) covariance matrix returned from fit.

data
numpy.ndarray of data to compare to model.

errorbars
Boolean for whether error bars were estimated by fit.

ier
Integer returned code from scipy.optimize.leastsq.

init_fit
numpy.ndarray result of model function, evaluated at provided independent variables and with initial parameters.

init_params
Initial parameters.

init_values
Dictionary with parameter names as keys, and initial values as values.

iter_cb
Optional callable function, to be called at each fit iteration. This must take take arguments of (params, iter, resid, *args, **kws), where params will have the current parameter values, iter the iteration, resid the current residual array, and *args and **kws as passed to the objective function. See Using a Iteration Callback Function.

jacfcn
Optional callable function, to be called to calculate Jacobian array.
7.3.3 Calculating uncertainties in the model function

We return to the first example above and ask not only for the uncertainties in the fitted parameters but for the range of values that those uncertainties mean for the model function itself. We can use the `ModelResult.eval_uncertainty()` method of the model result object to evaluate the uncertainty in the model with a specified level for $\sigma$.

That is, adding:

```python
dely = result.eval_uncertainty(sigma=3)
plt.fill_between(x, result.best_fit-dely, result.best_fit+dely, color="#ABABAB", label='3-σ uncertainty band')
```

...to the example fit to the Gaussian at the beginning of this chapter will give 3-$\sigma$ bands for the best-fit Gaussian, and produce the figure below.
7.3.4 Saving and Loading ModelResults

New in version 0.9.8.

As with saving models (see section Saving and Loading Models), it is sometimes desirable to save a ModelResult, either for later use or to organize and compare different fit results. Lmfit provides a save_modelresult() function that will save a ModelResult to a file. There is also a companion load_modelresult() function that can read this file and reconstruct a ModelResult from it.

As discussed in section Saving and Loading Models, there are challenges to saving model functions that may make it difficult to restore a saved a ModelResult in a way that can be used to perform a fit. Use of the optional funcdefs argument is generally the most reliable way to ensure that a loaded ModelResult can be used to evaluate the model function or redo the fit.

save_modelresult(modelresult, fname)

Save a ModelResult to a file.

Parameters:

- **modelresult** (ModelResult) – ModelResult to be saved.
- **fname** (str) – Name of file for saved ModelResult.

load_modelresult(fname, funcdefs=None)

Load a saved ModelResult from a file.

Parameters:

- **fname** (str) – Name of file containing saved ModelResult.
- **funcdefs** (dict, optional) – Dictionary of custom function names and definitions.

Returns: ModelResult object loaded from file.

Return type: ModelResult

An example of saving a ModelResult is:
7.4 Composite Models: adding (or multiplying) Models

One of the more interesting features of the Model class is that Models can be added together or combined with basic algebraic operations (add, subtract, multiply, and divide) to give a composite model. The composite model will have parameters from each of the component models, with all parameters being available to influence the whole model. This ability to combine models will become even more useful in the next chapter, when pre-built subclasses of Model are discussed. For now, we’ll consider a simple example, and build a model of a Gaussian plus a line, as to model a peak with a background. For such a simple problem, we could just build a model that included both components:

```python
def gaussian_plus_line(x, amp, cen, wid, slope, intercept):
 """line + 1-d gaussian""
 gauss = (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2))
 line = slope*x + intercept
 return gauss + line
```

and use that with:

```python
<examples/doc_model_savemodelresult.py>
import numpy as np

from lmfit.model import save_modelresult
from lmfit.models import GaussianModel

data = np.loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]

gmodel = GaussianModel()
result = gmodel.fit(y, x=x, amplitude=5, center=5, sigma=1)

save_modelresult(result, 'gauss_modelresult.sav')

print(result.fit_report())
<end examples/doc_model_savemodelresult.py>

To load that later, one might do:

```python
# <examples/doc_model_loadmodelresult.py>
import matplotlib.pyplot as plt
import numpy as np

from lmfit.model import load_modelresult

data = np.loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]

result = load_modelresult('gauss_modelresult.sav')
print(result.fit_report())

plt.plot(x, y, 'bo')
plt.plot(x, result.best_fit, 'r-')
plt.show()
# <end examples/doc_model_loadmodelresult.py>
```
mod = Model(gaussian_plus_line)

But we already had a function for a gaussian function, and maybe we’ll discover that a linear background isn’t sufficient which would mean the model function would have to be changed.

Instead, lmfit allows models to be combined into a `CompositeModel`. As an alternative to including a linear background in our model function, we could define a linear function:

```python
def line(x, slope, intercept):
    """a line""
    return slope*x + intercept
```

and build a composite model with just:

```python
mod = Model(gaussian) + Model(line)
```

This model has parameters for both component models, and can be used as:

```python
# <examples/doc_model_two_components.py>
import matplotlib.pyplot as plt
from numpy import exp, loadtxt, pi, sqrt
from lmfit import Model

data = loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1] + 0.25*x - 1.0

def gaussian(x, amp, cen, wid):
    """1-d gaussian: gaussian(x, amp, cen, wid)"
    return (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2))

def line(x, slope, intercept):
    """a line""
    return slope*x + intercept

mod = Model(gaussian) + Model(line)
pars = mod.make_params(amp=5, cen=5, wid=1, slope=0, intercept=1)
result = mod.fit(y, pars, x=x)
print(result.fit_report())
plt.plot(x, y, 'bo')
plt.plot(x, result.init_fit, 'k--', label='initial fit')
plt.plot(x, result.best_fit, 'r-', label='best fit')
plt.legend(loc='best')
plt.show()
# <end examples/doc_model_two_components.py>
```

which prints out the results:

```
[[Model]]
 (Model(gaussian) + Model(line))
```
and shows the plot on the left.

On the left, data is shown in blue dots, the total fit is shown in solid red line, and the initial fit is shown as a black dashed line. The figure on the right shows again the data in blue dots, the Gaussian component as a black dashed line and the linear component as a red dashed line. It is created using the following code:

```python
comps = result.eval_components()
plt.plot(x, y, 'bo')
plt.plot(x, comps['gaussian'], 'k--', label='Gaussian component')
plt.plot(x, comps['line'], 'r--', label='Line component')
```

The components were generated after the fit using the `ModelResult.eval_components()` method of the `result`, which returns a dictionary of the components, using keys of the model name (or prefix if that is set). This will use the parameter values in `result.params` and the independent variables (`x`) used during the fit. Note that while the `ModelResult` held in `result` does store the best parameters and the best estimate of the model in...
result.best_fit, the original model and parameters in pars are left unaltered.

You can apply this composite model to other data sets, or evaluate the model at other values of x. You may want to do this to give a finer or coarser spacing of data point, or to extrapolate the model outside the fitting range. This can be done with:

```
xwide = linspace(-5, 25, 3001)
predicted = mod.eval(result.params, x=xwide)
```

In this example, the argument names for the model functions do not overlap. If they had, the prefix argument to Model would have allowed us to identify which parameter went with which component model. As we will see in the next chapter, using composite models with the built-in models provides a simple way to build up complex models.

```python
class CompositeModel((left, right, op[, **kws])
    Combine two models (left and right) with binary operator (op).

    Normally, one does not have to explicitly create a CompositeModel, but can use normal Python operators +, -, *, and / to combine components as in:

        >>> mod = Model(fcn1) + Model(fcn2) * Model(fcn3)
```

Parameters

- *left* (Model) – Left-hand model.
- *right* (Model) – Right-hand model.
- *op* (callable binary operator) – Operator to combine left and right models.
- **kws* (optional) – Additional keywords are passed to Model when creating this new model.

Notes

The two models must use the same independent variable.

Note that when using built-in Python binary operators, a CompositeModel will automatically be constructed for you. That is, doing:

```
mod = Model(fcn1) + Model(fcn2) * Model(fcn3)
```

will create a CompositeModel. Here, left will be Model(fcn1), op will be operator.add(), and right will be another CompositeModel that has a left attribute of Model(fcn2), an op of operator.mul(), and a right of Model(fcn3).

To use a binary operator other than +, -, *, or / you can explicitly create a CompositeModel with the appropriate binary operator. For example, to convolve two models, you could define a simple convolution function, perhaps as:

```python
import numpy as np
def convolve(dat, kernel):
    """simple convolution of two arrays""
    npts = min(len(dat), len(kernel))
    pad = np.ones(npts)
    tmp = np.concatenate((pad*dat[0], dat, pad*dat[-1]))
    out = np.convolve(tmp, kernel, mode='valid')
    noff = int((len(out) - npts) / 2)
    return out[noff:][:npts]
```

7.4. Composite Models: adding (or multiplying) Models
which extends the data in both directions so that the convolving kernel function gives a valid result over the data range. Because this function takes two array arguments and returns an array, it can be used as the binary operator. A full script using this technique is here:

```python
# <examples/doc_model_composite.py>
import matplotlib.pyplot as plt
import numpy as np

from lmfit import CompositeModel, Model
from lmfit.lineshapes import gaussian, step

# create data from broadened step
x = np.linspace(0, 10, 201)
y = step(x, amplitude=12.5, center=4.5, sigma=0.88, form='erf')
np.random.seed(0)
y = y + np.random.normal(scale=0.35, size=x.size)

def jump(x, mid):
    """Heaviside step function.""
    o = np.zeros(x.size)
    imid = max(np.where(x <= mid)[0])
    o[imid:] = 1.0
    return o

def convolve(arr, kernel):
    """Simple convolution of two arrays.""
    npts = min(arr.size, kernel.size)
    pad = np.ones(npts)
    tmp = np.concatenate((pad*arr[0], arr, pad*arr[-1]))
    out = np.convolve(tmp, kernel, mode='valid')
    noff = int((len(out) - npts) / 2)
    return out[noff:noff+npts]

# create Composite Model using the custom convolution operator
mod = CompositeModel(Model(jump), Model(gaussian), convolve)
pars = mod.make_params(amplitude=1, center=3.5, sigma=1.5, mid=5.0)

# 'mid' and 'center' should be completely correlated, and 'mid' is
# used as an integer index, so a very poor fit variable:
pars['mid'].vary = False

# fit this model to data array y
result = mod.fit(y, params=pars, x=x)
print(result.fit_report())

# generate components
comps = result.eval_components(x=x)

# plot results
fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))
axes[0].plot(x, y, 'bo')
axes[0].plot(x, result.init_fit, 'k--', label='initial fit')
axes[0].plot(x, result.best_fit, 'r-', label='best fit')
```

(continues on next page)
which prints out the results:

```python
[[Model]]
(Model(jump) <function convolve at 0x12afb1f70> Model(gaussian))

[[Fit Statistics]]
# fitting method = leastsq
# function evals  = 25
# data points     = 201
# variables       = 3
chi-square       = 24.7562335
reduced chi-square= 0.12503148
Akaike info crit = -414.939746
Bayesian info crit = -405.029832

[[Variables]]
mid:  5 (fixed)
amplitude: 0.62508459 +/- 0.00189732 (0.30%) (init = 1)
center:  4.50853671 +/- 0.00973231 (0.22%) (init = 3.5)
sigma:   0.59576118 +/- 0.01348582 (2.26%) (init = 1.5)

[[Correlations]] (unreported correlations are < 0.100)
C(amplitude, center) = 0.329
C(amplitude, sigma) = 0.268
```

and shows the plots:

Using composite models with built-in or custom operators allows you to build complex models from testable sub-components.

7.4. Composite Models : adding (or multiplying) Models
Lmfit provides several built-in fitting models in the `models` module. These pre-defined models each subclass from the `Model` class of the previous chapter and wrap relatively well-known functional forms, such as Gaussian, Lorentzian, and Exponential that are used in a wide range of scientific domains. In fact, all the models are based on simple, plain Python functions defined in the `lineshapes` module. In addition to wrapping a function into a `Model`, these models also provide a `guess()` method that is intended to give a reasonable set of starting values from a data array that closely approximates the data to be fit.

As shown in the previous chapter, a key feature of the `Model` class is that models can easily be combined to give a composite `CompositeModel`. Thus, while some of the models listed here may seem pretty trivial (notably, `ConstantModel` and `LinearModel`), the main point of having these is to be able to use them in composite models. For example, a Lorentzian plus a linear background might be represented as:

```python
from lmfit.models import LinearModel, LorentzianModel

peak = LorentzianModel()
background = LinearModel()
model = peak + background
```

Almost all the models listed below are one-dimensional, with an independent variable named `x`. Many of these models represent a function with a distinct peak, and so share common features. To maintain uniformity, common parameter names are used whenever possible. Thus, most models have a parameter called `amplitude` that represents the overall intensity (or area of) a peak or function and a `sigma` parameter that gives a characteristic width.

The `sigma` parameter is the characteristic width of the peak, with many functions using
\[
\frac{(x - \mu)}{\sigma}
\]
where \(\mu\) is the centroid value. Most of these peak functions will have two additional parameters derived from and constrained by the other parameters. The first of these is `fwhm` which will hold the estimated “Full Width at Half Max” for the peak, which is often easier to compare between different models than `sigma`. The second of these is `height` which will contain the maximum value of the peak, typically the value at \(x = \mu\). Finally, each of these models has a `guess()` method that uses data to make a fairly crude but usually sufficient guess for the value of `amplitude`, `center`, and `sigma`, and sets a lower bound of 0 on the value of `sigma`.

8.1 Peak-like models

There are many peak-like models available. These include `GaussianModel`, `LorentzianModel`, `VoigtModel`, `PseudoVoigtModel`, and some less commonly used variations. Most of these models are unit-normalized and share the same parameter names so that you can easily switch between models and interpret the results. The `amplitude` parameter is the multiplicative factor for the unit-normalized peak lineshape, and so will represent the strength of that peak or the area under that curve. The `center` parameter will be the centroid `x` value. The `sigma` parameter is the characteristic width of the peak, with many functions using
\[
\frac{(x - \mu)}{\sigma}
\]
where \(\mu\) is the centroid value. Most of these peak functions will have two additional parameters derived from and constrained by the other parameters. The first of these is `fwhm` which will hold the estimated “Full Width at Half Max” for the peak, which is often easier to compare between different models than `sigma`. The second of these is `height` which will contain the maximum value of the peak, typically the value at \(x = \mu\). Finally, each of these models has a `guess()` method that uses data to make a fairly crude but usually sufficient guess for the value of `amplitude`, `center`, and `sigma`, and sets a lower bound of 0 on the value of `sigma`.
8.1.1 GaussianModel

class GaussianModel (independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)
A model based on a Gaussian or normal distribution lineshape.

The model has three Parameters: amplitude, center, and sigma. In addition, parameters fwhm and height are included as constraints to report full width at half maximum and maximum peak height, respectively.

\[f(x; A, \mu, \sigma) = \frac{A}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

where the parameter amplitude corresponds to \(A \), center to \(\mu \), and sigma to \(\sigma \). The full width at half maximum is \(2\sigma \sqrt{2\ln 2} \), approximately \(2.3548\sigma \).

For more information, see: https://en.wikipedia.org/wiki/Normal_distribution

Parameters

- **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
- **prefix** (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy** (str, ['raise', 'propagate', 'omit'], optional) – How to handle NaN and missing values in data. See Notes below.
- ****kwargs (optional) – Keyword arguments to pass to Model.

Notes

1. nan_policy sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - 'raise': raise a ValueError (default)
 - 'propagate': do nothing
 - 'omit': drop missing data

8.1.2 LorentzianModel

class LorentzianModel (independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)
A model based on a Lorentzian or Cauchy-Lorentz distribution function.

The model has three Parameters: amplitude, center, and sigma. In addition, parameters fwhm and height are included as constraints to report full width at half maximum and maximum peak height, respectively.

\[f(x; A, \mu, \sigma) = \frac{A}{\pi \left(\frac{\sigma}{(x-\mu)^2 + \sigma^2}\right)} \]

where the parameter amplitude corresponds to \(A \), center to \(\mu \), and sigma to \(\sigma \). The full width at half maximum is \(2\sigma \).

For more information, see: https://en.wikipedia.org/wiki/Cauchy_distribution

Parameters

- **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
• **prefix (str, optional)** – String to prepend to parameter names, needed to add two Models that have parameter names in common.

• **nan_policy (\{ 'raise', 'propagate', 'omit' \}, optional)** – How to handle NaN and missing values in data. See Notes below.

• **kwargs (optional)** – Keyword arguments to pass to Model.

Notes

1. **nan_policy** sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `'raise'` : raise a ValueError (default)
 - `'propagate'` : do nothing
 - `'omit'` : drop missing data

8.1.3 SplitLorentzianModel

class SplitLorentzianModel (independent_vars=[‘x’], prefix=”, nan_policy=’raise’, **kwargs)

A model based on a Lorentzian or Cauchy-Lorentz distribution function.

The model has four parameters: amplitude, center, sigma, and sigma_r. In addition, parameters fwhm and height are included as constraints to report full width at half maximum and maximum peak height, respectively.

‘Split’ means that the width of the distribution is different between left and right slopes.

\[
f(x; A, \mu, \sigma, \sigma_r) = \frac{2A}{\pi(\sigma + \sigma_r)} \left[\frac{\sigma^2}{(x - \mu)^2 + \sigma^2} * H(\mu - x) + \frac{\sigma_r^2}{(x - \mu)^2 + \sigma_r^2} * H(x - \mu) \right]
\]

where the parameter amplitude corresponds to \(A \), center to \(\mu \), sigma to \(\sigma \), sigma_l to \(\sigma_l \), and \(H(x) \) is a Heaviside step function:

\[
H(x) = \begin{cases}
0 & |x| < 0, \\
1 & |x| \geq 0
\end{cases}
\]

The full width at half maximum is \(\sigma_l + \sigma_r \). Just as with the Lorentzian model, integral of this function from -\(\infty \) to +\(\infty \) equals to amplitude.

For more information, see: https://en.wikipedia.org/wiki/Cauchy_distribution

Parameters

- **independent_vars (list of str, optional)** – Arguments to the model function that are independent variables default is [‘x’]).

- **prefix (str, optional)** – String to prepend to parameter names, needed to add two Models that have parameter names in common.

- **nan_policy (\{ 'raise', 'propagate', 'omit' \}, optional)** – How to handle NaN and missing values in data. See Notes below.

- **kwargs (optional)** – Keyword arguments to pass to Model.
Notes

1. *nan_policy* sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `'raise'`: raise a `ValueError` (default)
 - `'propagate'`: do nothing
 - `'omit'`: drop missing data

8.1.4 VoigtModel

class VoigtModel *(independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)*

A model based on a Voigt distribution function.

The model has four Parameters: *amplitude*, *center*, *sigma*, and *gamma*. By default, *gamma* is constrained to have a value equal to *sigma*, though it can be varied independently. In addition, parameters *fwhm* and *height* are included as constraints to report full width at half maximum and maximum peak height, respectively. The definition for the Voigt function used here is:

\[
 f(x; A, \mu, \sigma, \gamma) = \frac{A \text{Re}[w(z)]}{\sigma \sqrt{2\pi}}
\]

where

\[
 z = \frac{x - \mu + i\gamma}{\sigma \sqrt{2}}
\]

\[
 w(z) = e^{-z^2} \text{erfc}(-iz)
\]

and \(\text{erfc}(x) \) is the complementary error function. As above, *amplitude* corresponds to \(A \), *center* to \(\mu \), and *sigma* to \(\sigma \). The parameter *gamma* corresponds to \(\gamma \). If *gamma* is kept at the default value (constrained to *sigma*), the full width at half maximum is approximately \(3.6013\sigma \).

For more information, see: https://en.wikipedia.org/wiki/Voigt_profile

Parameters

- **independent_vars** *(list of str, optional)* – Arguments to the model function that are independent variables default is ['x']
- **prefix** *(str, optional)* – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy** *({'raise', 'propagate', 'omit'}, optional)* – How to handle NaN and missing values in data. See Notes below.
- ****kwargs**(optional)** – Keyword arguments to pass to Model.

Notes

1. *nan_policy* sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `'raise'`: raise a `ValueError` (default)
 - `'propagate'`: do nothing
 - `'omit'`: drop missing data
8.1.5 PseudoVoigtModel

```python
class PseudoVoigtModel(independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)
```

A model based on a pseudo-Voigt distribution function.

This is a weighted sum of a Gaussian and Lorentzian distribution function that share values for amplitude \(A\), center \(\mu\), and full width at half maximum \(fwhm\) (and so has constrained values of \(\sigma\) and \(\text{height}\) (maximum peak height). The parameter \(\text{fraction}\) \(\alpha\) controls the relative weight of the Gaussian and Lorentzian components, giving the full definition of:

\[
f(x; A, \mu, \sigma, \alpha) = \frac{(1 - \alpha)A}{\sigma_g \sqrt{2\pi}} e^{\frac{-1}{2}\sigma_g^2} + \frac{\alpha A}{\pi} \left[\frac{\sigma}{\sigma_g^2 + \sigma^2}\right]
\]

where \(\sigma_g = \frac{\sigma}{\sqrt{2\ln 2}}\) so that the full width at half maximum of each component and of the sum is \(2\sigma\). The \(\text{guess()}\) function always sets the starting value for \(\text{fraction}\) at 0.5.

For more information, see: https://en.wikipedia.org/wiki/Voigt_profile#Pseudo-Voigt_Approximation

Parameters

- `independent_vars` (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
- `prefix` (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- `nan_policy` ('raise', 'propagate', 'omit', optional) – How to handle NaN and missing values in data. See Notes below.
- `**kwargs` (optional) – Keyword arguments to pass to Model.

Notes

1. `nan_policy` sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - 'raise': raise a \(\text{ValueError}\) (default)
 - 'propagate': do nothing
 - 'omit': drop missing data

8.1.6 MoffatModel

```python
class MoffatModel(independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)
```

A model based on the Moffat distribution function.

The model has four Parameters: amplitude \(A\), center \(\mu\), a width parameter \(\sigma\), and an exponent \(\beta\). In addition, parameters \(fwhm\) and \(\text{height}\) are included as constraints to report full width at half maximum and maximum peak height, respectively.

\[
f(x; A, \mu, \sigma, \beta) = A \left[\left(\frac{x - \mu}{\sigma}\right)^2 + 1\right]^{-\beta}
\]

the full width at half maximum is \(2\sigma \sqrt{2^{1/\beta} - 1}\). The \(\text{guess()}\) function always sets the starting value for \(\beta\) to 1.

Note that for \((\beta = 1)\) the Moffat has a Lorentzian shape. For more information, see: https://en.wikipedia.org/wiki/Moffat_distribution

Parameters

8.1. Peak-like models
• **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).

• **prefix** (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.

• **nan_policy** (['raise', 'propagate', 'omit'], optional) – How to handle NaN and missing values in data. See Notes below.

• **kwargs** (optional) – Keyword arguments to pass to Model.

Notes

1. **nan_policy** sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - 'raise': raise a ValueError (default)
 - 'propagate': do nothing
 - 'omit': drop missing data

8.1.7 Pearson7Model

```python
class Pearson7Model (independent_vars=['x'], prefix='', nan_policy='raise', **kwargs):
    A model based on a Pearson VII distribution.
```

The model has four parameters: amplitude (A), center (\(\mu\)), sigma (\(\sigma\)), and exponent (\(m\)). In addition, parameters *fwhm* and *height* are included as constraints to report estimates for the full width at half maximum and maximum peak height, respectively.

\[
f(x; A, \mu, \sigma, m) = \frac{A}{\sigma \beta(m - \frac{1}{2}, \frac{1}{2})} \left[1 + \left(\frac{x - \mu}{\sigma}\right)^2 \right]^{-m}
\]

where \(\beta\) is the beta function (see scipy.special.beta). The *guess()* function always gives a starting value for exponent of 1.5. In addition, parameters *fwhm* and *height* are included as constraints to report full width at half maximum and maximum peak height, respectively.

For more information, see: https://en.wikipedia.org/wiki/Pearson_distribution#The_Pearson_type_VII_distribution

Parameters

• **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).

• **prefix** (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.

• **nan_policy** (['raise', 'propagate', 'omit'], optional) – How to handle NaN and missing values in data. See Notes below.

• **kwargs** (optional) – Keyword arguments to pass to Model.
Notes

1. `nan_policy` sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `raise` : raise a `ValueError` (default)
 - `propagate` : do nothing
 - `omit` : drop missing data

8.1.8 StudentsTModel

```python
class StudentsTModel (independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)
```

A model based on a Student’s t-distribution function.

The model has three Parameters: `amplitude (A)`, `center (µ)`, and `sigma (σ)`. In addition, parameters `fwhm` and `height` are included as constraints to report full width at half maximum and maximum peak height, respectively.

\[
f(x; A, µ, σ) = \frac{A\Gamma(\frac{σ+1}{2})}{\sqrt{σπ} \Gamma(\frac{σ}{2})} \left[1 + \left(\frac{x - µ}{σ}\right)^2\right]^{-\frac{σ+1}{2}}
\]

where \(\Gamma(x) \) is the gamma function.

For more information, see: https://en.wikipedia.org/wiki/Student%27s_t-distribution

Parameters

- `independent_vars` (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
- `prefix` (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- `nan_policy` ('raise', 'propagate', 'omit', optional) – How to handle NaN and missing values in data. See Notes below.
- `**kwargs` (optional) – Keyword arguments to pass to Model.

Notes

1. `nan_policy` sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `raise` : raise a `ValueError` (default)
 - `propagate` : do nothing
 - `omit` : drop missing data

8.1.9 BreitWignerModel

```python
class BreitWignerModel (independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)
```

A model based on a Breit-Wigner-Fano function.

The model has four Parameters: `amplitude (A)`, `center (µ)`, `sigma (σ)`, and `q (q)`. \[
f(x; A, µ, σ, q) = A(\frac{qσ}{2} + x - µ)^2 \frac{(σ/2)^2 + (x - µ)^2}{(σ/2) + (x - µ)^2}
\]

For more information, see: https://en.wikipedia.org/wiki/Fano_resonance
Parameters

- **independent_vars** (*list of str, optional*) - Arguments to the model function that are independent variables default is ['x']).
- **prefix** (*str, optional*) - String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy** (*{'raise', 'propagate', 'omit'}, optional*) - How to handle NaN and missing values in data. See Notes below.
- ****kwargs** (*optional*) - Keyword arguments to pass to *Model*.

Notes

1. **nan_policy** sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - 'raise': raise a *ValueError* (default)
 - 'propagate': do nothing
 - 'omit': drop missing data

8.1.10 LognormalModel

class LognormalModel *(independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)*

A model based on the Log-normal distribution function.

The modal has three Parameters *amplitude* (*A*), *center* (*μ*), and *sigma* (*σ*). In addition, parameters *fwhm* and *height* are included as constraints to report estimates of full width at half maximum and maximum peak height, respectively.

\[
f(x; A, \mu, \sigma) = \frac{A}{\sigma \sqrt{2\pi}} \frac{e^{-\ln(x)-\mu)^2/2\sigma^2}}{x}
\]

For more information, see: https://en.wikipedia.org/wiki/Lognormal

Parameters

- **independent_vars** (*list of str, optional*) - Arguments to the model function that are independent variables default is ['x']).
- **prefix** (*str, optional*) - String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy** (*{'raise', 'propagate', 'omit'}, optional*) - How to handle NaN and missing values in data. See Notes below.
- ****kwargs** (*optional*) - Keyword arguments to pass to *Model*.
Notes

1. `nan_policy` sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `raise`: raise a `ValueError` (default)
 - `propagate`: do nothing
 - `omit`: drop missing data

8.1.11 DampedOscillatorModel

class DampedOscillatorModel(independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)

A model based on the Damped Harmonic Oscillator Amplitude.

The model has three Parameters: `amplitude` (A), `center` (μ), and `sigma` (σ). In addition, the parameter `height` is included as a constraint to report the maximum peak height.

$$f(x; A, \mu, \sigma) = \frac{A}{\sqrt{[1 - (x/\mu)^2]^2 + (2\sigma x/\mu)^2}}$$

For more information, see: https://en.wikipedia.org/wiki/Harmonic_oscillator#Amplitude_part

Parameters

- `independent_vars` (list of str, optional) – Arguments to the model function that are independent variables default is
 ['x']).
- `prefix` (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- `nan_policy` (`{'raise', 'propagate', 'omit'}, optional`) – How to handle NaN and missing values in data. See Notes below.
- `**kwargs` (optional) – Keyword arguments to pass to Model.

Notes

1. `nan_policy` sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `raise`: raise a `ValueError` (default)
 - `propagate`: do nothing
 - `omit`: drop missing data

8.1.12 DampedHarmonicOscillatorModel

class DampedHarmonicOscillatorModel(independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)

A model based on a variation of the Damped Harmonic Oscillator.

The model follows the definition given in DAVE/PAN (see: https://www.ncnr.nist.gov/dave) and has four Parameters: `amplitude` (A), `center` (μ), `sigma` (σ), and `gamma` (γ). In addition, parameters `fwhm` and `height` are included as constraints to report estimates for full width at half maximum and maximum peak height, respectively.

$$f(x; A, \mu, \sigma, \gamma) = \frac{A\sigma}{\pi[1 - \exp(-x/\gamma)]} \left[\frac{1}{(x-\mu)^2 + \sigma^2} - \frac{1}{(x+\mu)^2 + \sigma^2} \right]$$

8.1. Peak-like models
where $\gamma = kT$, k is the Boltzmann constant in $\text{eV}K^{-1}$, and T is the temperature in K.

For more information, see: https://en.wikipedia.org/wiki/Harmonic_oscillator

Parameters

- **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x'].
- **prefix** (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy** (\{'raise', 'propagate', 'omit'\}, optional) – How to handle NaN and missing values in data. See Notes below.
- **kwargs** (optional) – Keyword arguments to pass to Model.

Notes

1. **nan_policy** sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - 'raise': raise a ValueError (default)
 - 'propagate': do nothing
 - 'omit': drop missing data

8.1.13 ExponentialGaussianModel

class ExponentialGaussianModel(independent_vars=['x'], prefix='', **kwargs)

A model of an Exponentially modified Gaussian distribution.

The model has four Parameters: amplitude (A), center (μ), sigma (σ), and gamma (γ).

\[
f(x; A, \mu, \sigma, \gamma) = \frac{A\gamma}{2} \exp\left[\gamma(\mu - x + \gamma\sigma^2/2)\right] \text{erfc}\left(\frac{\mu + \gamma\sigma^2 - x}{\sqrt{2\sigma}}\right)
\]

where $\text{erfc}(\cdot)$ is the complementary error function.

For more information, see: https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution

Parameters

- **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x'].
- **prefix** (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy** (\{'raise', 'propagate', 'omit'\}, optional) – How to handle NaN and missing values in data. See Notes below.
- **kwargs** (optional) – Keyword arguments to pass to Model.
Notes

1. `nan_policy` sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - 'raise': raise a `ValueError` (default)
 - 'propagate': do nothing
 - 'omit': drop missing data

8.1.14 SkewedGaussianModel

class SkewedGaussianModel (independent_vars='x', prefix='', nan_policy='raise', **kwargs)

A skewed Gaussian model, using a skewed normal distribution.

The model has four Parameters: amplitude (A), center (μ), sigma (σ), and gamma (γ).

$$f(x; A, \mu, \sigma, \gamma) = \frac{A}{\sigma\sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2\sigma^2}} \left\{ 1 + \text{erf} \left[\frac{\gamma(x - \mu)}{\sigma\sqrt{2}} \right] \right\}$$

where \(\text{erf}()\) is the error function.

For more information, see: https://en.wikipedia.org/wiki/Skew_normal_distribution

Parameters

- `independent_vars` (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
- `prefix` (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- `nan_policy` ({'raise', 'propagate', 'omit'}, optional) – How to handle NaN and missing values in data. See Notes below.
- `**kwargs` (optional) – Keyword arguments to pass to `Model`.

Notes

1. `nan_policy` sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - 'raise': raise a `ValueError` (default)
 - 'propagate': do nothing
 - 'omit': drop missing data

8.1.15 SkewedVoigtModel

class SkewedVoigtModel (independent_vars='x', prefix='', nan_policy='raise', **kwargs)

A skewed Voigt model, modified using a skewed normal distribution.

The model has five Parameters amplitude (A), center (μ), sigma (σ), and gamma (γ), as usual for a Voigt distribution, and adds a new Parameter skew.

$$f(x; A, \mu, \sigma, \gamma, \text{skew}) = \text{Voigt}(x; A, \mu, \sigma, \gamma) \left\{ 1 + \text{erf} \left[\frac{\text{skew}(x - \mu)}{\sigma\sqrt{2}} \right] \right\}$$

where \(\text{erf}()\) is the error function.

For more information, see: https://en.wikipedia.org/wiki/Skew_normal_distribution

8.1. Peak-like models
Non-Linear Least-Squares Minimization and Curve-Fitting for Python, Release 1.0.2

Parameters

- **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
- **prefix** (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy** (['raise', 'propagate', 'omit'], optional) – How to handle NaN and missing values in data. See Notes below.
- ****kwargs (optional) – Keyword arguments to pass to Model.

Notes

1. **nan_policy** sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - 'raise': raise a ValueError (default)
 - 'propagate': do nothing
 - 'omit': drop missing data

8.1.16 ThermalDistributionModel

```python
class ThermalDistributionModel (independent_vars=['x'], prefix='', nan_policy='raise', form='bose', **kwargs)
```

Return a thermal distribution function.

Variable **form** defines the kind of distribution as below with three Parameters: **amplitude** (\(A\)), **center** (\(x_0\)), and **\(k_t\)** (\(k_B\)). The following distributions are available:

- 'bose': Bose-Einstein distribution (default)
- 'maxwell': Maxwell-Boltzmann distribution
- 'fermi': Fermi-Dirac distribution

The functional forms are defined as:

\[
\begin{align*}
 f(x; A, x_0, k_B, \text{form = 'bose'}) &= \frac{1}{A \exp\left(\frac{x-x_0}{k_B}\right) - 1} \\
 f(x; A, x_0, k_B, \text{form = 'maxwell'}) &= \frac{1}{A \exp\left(\frac{x-x_0}{k_B}\right)} \\
 f(x; A, x_0, k_B, \text{form = 'fermi'}) &= \frac{1}{A \exp\left(\frac{x-x_0}{k_B}\right) + 1}
\end{align*}
\]

Notes

- \(k_B\) should be defined in the same units as \(x\) (\(k_B = 8.617 \times 10^{-5}\) eV/K).
- set \(k_B < 0\) to implement the energy loss convention common in scattering research.

For more information, see: http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfcn.html

Parameters

- **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
Non-Linear Least-Squares Minimization and Curve-Fitting for Python, Release 1.0.2

- **prefix** *(str, optional)* – String to prepend to parameter names, needed to add two Models that have parameter names in common.

- **nan_policy** *(('raise', 'propagate', 'omit'), optional)* – How to handle NaN and missing values in data. See Notes below.

- ****kwargs**(optional)** – Keyword arguments to pass to Model.

Notes

1. **nan_policy** sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `'raise'`: raise a `ValueError` (default)
 - `'propagate'`: do nothing
 - `'omit'`: drop missing data

8.1.17 DoniachModel

class **DoniachModel** *(independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)*

A model of an Doniach Sunjic asymmetric lineshape.

This model is used in photo-emission and has four Parameters: amplitude (A), center (μ), sigma (σ), and gamma (γ). In addition, parameter height is included as a constraint to report maximum peak height.

$$ f(x; A, \mu, \sigma, \gamma) = \frac{A}{\sigma^{1-\gamma}} \cos\left[\frac{\pi \gamma}{2} + (1 - \gamma) \arctan\left((x - \mu)/\sigma\right)\right] \left[1 + (x - \mu)/\sigma\right]^{(1-\gamma)/2} $$

For more information, see: https://www.casaxps.com/help_manual/line_shapes.htm

Parameters

- **independent_vars** *(list of str, optional)* – Arguments to the model function that are independent variables default is ['x']).

- **prefix** *(str, optional)* – String to prepend to parameter names, needed to add two Models that have parameter names in common.

- **nan_policy** *(('raise', 'propagate', 'omit'), optional)* – How to handle NaN and missing values in data. See Notes below.

- ****kwargs**(optional)** – Keyword arguments to pass to Model.

Notes

1. **nan_policy** sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `'raise'`: raise a `ValueError` (default)
 - `'propagate'`: do nothing
 - `'omit'`: drop missing data
8.2 Linear and Polynomial Models

These models correspond to polynomials of some degree. Of course, lmfit is a very inefficient way to do linear regression (see numpy.polyfit or scipy.stats.linregress), but these models may be useful as one of many components of a composite model.

8.2.1 ConstantModel

class ConstantModel(independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)

Constant model, with a single Parameter: c.

Note that this is ‘constant’ in the sense of having no dependence on the independent variable x, not in the sense of being non-varying. To be clear, c will be a Parameter that will be varied in the fit (by default, of course).

Parameters

- **independent_vars**(list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
- **prefix**(str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy**((['raise', 'propagate', 'omit'], optional) – How to handle NaN and missing values in data. See Notes below.
- ****kwargs**(optional) – Keyword arguments to pass to Model.

Notes

1. **nan_policy** sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - ‘raise’ : raise a ValueError (default)
 - ‘propagate’ : do nothing
 - ‘omit’ : drop missing data

8.2.2 LinearModel

class LinearModel(independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)

Linear model, with two Parameters: intercept and slope.

Defined as:

\[f(x; m, b) = mx + b \]

with slope for m and intercept for b.

Parameters

- **independent_vars**(list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
- **prefix**(str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy**((['raise', 'propagate', 'omit'], optional) – How to handle NaN and missing values in data. See Notes below.
**kwags (optional) – Keyword arguments to pass to Model.

Notes

1. *nan_policy* sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - ‘raise’: raise a ValueError (default)
 - ‘propagate’: do nothing
 - ‘omit’: drop missing data

8.2.3 QuadraticModel

class QuadraticModel (independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)

A quadratic model, with three Parameters: \(a \), \(b \), and \(c \).

Defined as:

\[
f(x; a, b, c) = ax^2 + bx + c
\]

Parameters

- **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is [‘x’]).
- **prefix** (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy** (‘raise’, ‘propagate’, ‘omit’, optional) – How to handle NaN and missing values in data. See Notes below.
- **kwags (optional) – Keyword arguments to pass to Model.

Notes

1. *nan_policy* sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - ‘raise’: raise a ValueError (default)
 - ‘propagate’: do nothing
 - ‘omit’: drop missing data

8.2.4 PolynomialModel

class PolynomialModel (degree=7, independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)

A polynomial model with up to 7 Parameters, specified by *degree*.

\[
f(x; c_0, c_1, \ldots, c_7) = \sum_{i=0}^{7} c_i x^i
\]

with parameters \(c_0 \), \(c_1 \), \ldots, \(c_7 \). The supplied *degree* will specify how many of these are actual variable parameters. This uses numpy.polyval for its calculation of the polynomial.

Parameters
Notes

1. **nan_policy** sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `'raise'`: raise a `ValueError` (default)
 - `'propagate'`: do nothing
 - `'omit'`: drop missing data

8.3 Periodic Models

These models correspond to periodic functions.

8.3.1 SineModel

```python
class SineModel (independent_vars=['x'], prefix='', nan_policy='raise', **kwargs)
```

A model based on a sinusoidal lineshape.

The model has three Parameters: `amplitude`, `frequency`, and `shift`.

\[f(x; A, \phi, f) = A \sin(fx + \phi) \]

where the parameter `amplitude` corresponds to \(A \), `frequency` to \(f \), and `shift` to \(\phi \). All are constrained to be non-negative, and `shift` additionally to be smaller than \(2\pi \).

Parameters

- **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
- **prefix** (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy** (['raise', 'propagate', 'omit'], optional) – How to handle NaN and missing values in data. See Notes below.
- **kwargs** (optional) – Keyword arguments to pass to Model.
Notes

1. `nan_policy` sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - 'raise': raise a `ValueError` (default)
 - 'propagate': do nothing
 - 'omit': drop missing data

8.4 Step-like models

Two models represent step-like functions, and share many characteristics.

8.4.1 StepModel

class StepModel (independent_vars=['x'], prefix='', nan_policy='raise', form='linear', **kwargs)
A model based on a Step function.

The model has three Parameters: amplitude (A), center (μ), and sigma (σ).

There are four choices for `form`:
- 'linear' (default)
- 'atan' or 'arctan' for an arc-tangent function
- 'erf' for an error function
- 'logistic' for a logistic function (for more information, see: https://en.wikipedia.org/wiki/Logistic_function)

The step function starts with a value 0 and ends with a value of A rising to A/2 at μ, with σ setting the characteristic width. The functional forms are defined as:

\[
\begin{align*}
 f(x; A, \mu, \sigma, \text{form} = 'linear') &= A \min [1, \max (0, \alpha)] \\
 f(x; A, \mu, \sigma, \text{form} = 'arctan') &= A[1/2 + \arctan (\alpha)/\pi] \\
 f(x; A, \mu, \sigma, \text{form} = 'erf') &= A[1 + \operatorname{erf}(\alpha)]/2 \\
 f(x; A, \mu, \sigma, \text{form} = 'logistic') &= A[1 - \frac{1}{1 + e^{\alpha}}]
\end{align*}
\]

where \(\alpha = (x - \mu)/\sigma \).

Parameters
- `independent_vars` (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
- `prefix` (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- `nan_policy` (['raise', 'propagate', 'omit'], optional) – How to handle NaN and missing values in data. See Notes below.
- **kwargs (optional) – Keyword arguments to pass to Model.
Notes

1. *nan_policy* sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - ‘raise’: raise a ValueError (default)
 - ‘propagate’: do nothing
 - ‘omit’: drop missing data

8.4.2 RectangleModel

class RectangleModel (independent_vars=['x'], prefix='', nan_policy='raise', form='linear', **kwargs)

A model based on a Step-up and Step-down function.

The model has five Parameters: *amplitude* (*A*), *center1* (*μ*₁), *center2* (*μ*₂), *sigma1* (*σ*₁), and *sigma2* (*σ*₂).

There are four choices for *form*, which is used for both the Step up and the Step down:
- ‘linear’ (default)
- ‘atan’ or ‘arctan’ for an arc-tangent function
- ‘erf’ for an error function
- ‘logistic’ for a logistic function (for more information, see: https://en.wikipedia.org/wiki/Logistic_function)

The function starts with a value 0 and transitions to a value of *A*, taking the value *A*/2 at *μ*₁, with *σ*₁ setting the characteristic width. The function then transitions again to the value *A*/2 at *μ*₂, with *σ*₂ setting the characteristic width. The functional forms are defined as:

\[
\begin{align*}
 f(x; A, \mu, \sigma, \text{form } 'linear') &= A\{\min \left[1, \max \left(0, \alpha_1\right)\right] + \min \left[-1, \max \left(0, \alpha_2\right)\right]\} \\
 f(x; A, \mu, \sigma, \text{form } 'arctan') &= A[\arctan(\alpha_1) + \arctan(\alpha_2)]/\pi \\
 f(x; A, \mu, \sigma, \text{form } 'erf') &= A[\text{erf}(\alpha_1) + \text{erf}(\alpha_2)]/2 \\
 f(x; A, \mu, \sigma, \text{form } 'logistic') &= A[1 - \frac{1}{1 + e^{\alpha_1}} - \frac{1}{1 + e^{\alpha_2}}]
\end{align*}
\]

where \(\alpha_1 = (x - \mu_1)/\sigma_1\) and \(\alpha_2 = -(x - \mu_2)/\sigma_2\).

Parameters

- **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).
- **prefix** (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- **nan_policy** (‘raise’, ‘propagate’, ‘omit’, optional) – How to handle NaN and missing values in data. See Notes below.
- ****kwargs (optional) – Keyword arguments to pass to Model.
Notes

1. `nan_policy` sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `'raise'`: raise a `ValueError` (default)
 - `'propagate'`: do nothing
 - `'omit'`: drop missing data

8.5 Exponential and Power law models

8.5.1 ExponentialModel

class ExponentialModel:

A model based on an exponential decay function.

The model has two Parameters: `amplitude (A)` and `decay (τ)` and is defined as:

\[f(x; A, τ) = Ae^{-x/τ} \]

For more information, see: https://en.wikipedia.org/wiki/Exponential_decay

Parameters

- `independent_vars` (list of str, optional) – Arguments to the model function that are independent variables default is `[‘x’]`.
- `prefix` (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.
- `nan_policy` ([‘raise’, ‘propagate’, ‘omit’], optional) – How to handle NaN and missing values in data. See Notes below.
- `**kwargs` (optional) – Keyword arguments to pass to Model.

Notes

1. `nan_policy` sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `'raise'`: raise a `ValueError` (default)
 - `'propagate'`: do nothing
 - `'omit'`: drop missing data

8.5.2 PowerLawModel

class PowerLawModel:

A model based on a Power Law.

The model has two Parameters: `amplitude (A)` and `exponent (k)` and is defined as:

\[f(x; A, k) = Ax^{k} \]

For more information, see: https://en.wikipedia.org/wiki/Power_law

Parameters
• **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x']).

• **prefix** (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.

• **nan_policy** (['raise', 'propagate', 'omit'], optional) – How to handle NaN and missing values in data. See Notes below.

• ****kwars (optional) – Keyword arguments to pass to Model.

Notes

1. nan_policy sets what to do when a NaN or missing value is seen in the data. Should be one of:
 • 'raise' : raise a ValueError (default)
 • 'propagate' : do nothing
 • 'omit' : drop missing data

8.6 Two dimensional Peak-like models

The one example of a two-dimensional peak is a two-dimensional Gaussian.

8.6.1 Gaussian2dModel

```python
class Gaussian2dModel (independent_vars=['x', 'y'], prefix='', nan_policy='raise', **kwargs)
```
A model based on a two-dimensional Gaussian function.

The model has two independent variables x and y and five Parameters: amplitude, centerx, sigmax, centery, and sigmay. In addition, parameters fwhmx, fwhmy, and height are included as constraints to report the maximum peak height and the two full width at half maxima, respectively.

\[
f(x, y; A, \mu_x, \sigma_x, \mu_y, \sigma_y) = Ag(x; A = 1, \mu_x, \sigma_x)g(y; A = 1, \mu_y, \sigma_y)
\]

where subfunction \(g(x; A, \mu, \sigma)\) is a Gaussian lineshape:

\[
g(x; A, \mu, \sigma) = \frac{A}{\sigma \sqrt{2\pi}} e^{-\left(\frac{(x-\mu)^2}{2\sigma^2}\right)}.
\]

Parameters

• **independent_vars** (list of str, optional) – Arguments to the model function that are independent variables default is ['x', 'y']).

• **prefix** (str, optional) – String to prepend to parameter names, needed to add two Models that have parameter names in common.

• **nan_policy** (['raise', 'propagate', 'omit'], optional) – How to handle NaN and missing values in data. See Notes below.

• ****kwars (optional) – Keyword arguments to pass to Model.
Notes

1. *nan_policy* sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `'raise'`: raise a *ValueError* (default)
 - `'propagate'`: do nothing
 - `'omit'`: drop missing data

8.7 User-defined Models

As shown in the previous chapter (*Modeling Data and Curve Fitting*), it is fairly straightforward to build fitting models from parametrized Python functions. The number of model classes listed so far in the present chapter should make it clear that this process is not too difficult. Still, it is sometimes desirable to build models from a user-supplied function. This may be especially true if model-building is built-in to some larger library or application for fitting in which the user may not be able to easily build and use a new model from Python code.

The *ExpressionModel* allows a model to be built from a user-supplied expression. This uses the *asteval* module also used for mathematical constraints as discussed in *Using Mathematical Constraints*.

8.7.1 ExpressionModel

class ExpressionModel (expr, independent_vars=None, init_script=None, nan_policy='raise', **kws)

ExpressionModel class.

Generate a model from user-supplied expression.

Parameters

- **expr** *(str)* – Mathematical expression for model.
- **independent_vars** *(list of str or None, optional)* – Variable names to use as independent variables.
- **init_script** *(str or None, optional)* – Initial script to run in asteval interpreter.
- **nan_policy** *(('raise', 'propagate', 'omit'), optional)* – How to handle NaN and missing values in data. See Notes below.
- ****kws** *(optional)* – Keyword arguments to pass to *Model*.

Notes

1. each instance of ExpressionModel will create and use its own version of an asteval interpreter.
2. *prefix* is not supported for ExpressionModel.
3. *nan_policy* sets what to do when a NaN or missing value is seen in the data. Should be one of:
 - `'raise'`: raise a *ValueError* (default)
 - `'propagate'`: do nothing
 - `'omit'`: drop missing data
Since the point of this model is that an arbitrary expression will be supplied, the determination of what are the parameter names for the model happens when the model is created. To do this, the expression is parsed, and all symbol names are found. Names that are already known (there are over 500 function and value names in the asteval namespace, including most Python built-ins, more than 200 functions inherited from NumPy, and more than 20 common lineshapes defined in the lineshapes module) are not converted to parameters. Unrecognized names are expected to be names of either parameters or independent variables. If independent_vars is the default value of None, and if the expression contains a variable named x, that will be used as the independent variable. Otherwise, independent_vars must be given.

For example, if one creates an ExpressionModel as:

```python
from lmfit.models import ExpressionModel
mod = ExpressionModel('off + amp * exp(-x/x0) * sin(x*phase)')
```

The name exp will be recognized as the exponent function, so the model will be interpreted to have parameters named off, amp, x0 and phase. In addition, x will be assumed to be the sole independent variable. In general, there is no obvious way to set default parameter values or parameter hints for bounds, so this will have to be handled explicitly.

To evaluate this model, you might do the following:

```python
from numpy import exp, linspace, sin
x = linspace(0, 10, 501)
params = mod.make_params(off=0.25, amp=1.0, x0=2.0, phase=0.04)
y = mod.eval(params, x=x)
```

While many custom models can be built with a single line expression (especially since the names of the lineshapes like gaussian, lorentzian and so on, as well as many NumPy functions, are available), more complex models will inevitably require multiple line functions. You can include such Python code with the init_script argument. The text of this script is evaluated when the model is initialized (and before the actual expression is parsed), so that you can define functions to be used in your expression.

As a probably unphysical example, to make a model that is the derivative of a Gaussian function times the logarithm of a Lorentzian function you may could to define this in a script:

```python
script = ""
def mycurve(x, height, mid, wid):
    loren = lorentzian(x, amplitude=height, center=mid, sigma=wid)
    gauss = gaussian(x, amplitude=height, center=mid, sigma=wid)
    return log(loren) * gradient(gauss) / gradient(x)
""
```

and then use this with ExpressionModel as:

```python
mod = ExpressionModel('mycurve(x, height, mid, wid)', init_script=script,
independent_vars=['x'])
```

As above, this will interpret the parameter names to be height, mid, and wid, and build a model that can be used to fit data.
8.8 Example 1: Fit Peak data to Gaussian, Lorentzian, and Voigt profiles

Here, we will fit data to three similar line shapes, in order to decide which might be the better model. We will start with a Gaussian profile, as in the previous chapter, but use the built-in GaussianModel instead of writing one ourselves. This is a slightly different version from the one in previous example in that the parameter names are different, and have built-in default values. We will simply use:

```python
from numpy import loadtxt
from lmfit.models import GaussianModel

data = loadtxt('test_peak.dat')
x = data[:, 0]
y = data[:, 1]
mod = GaussianModel()
pars = mod.guess(y, x=x)
out = mod.fit(y, pars, x=x)
print(out.fit_report(min_correl=0.25))
```

which prints out the results:

```
[[Model]]
 Model(gaussian)
[[Fit Statistics]]
 # fitting method   = leastsq
 # function evals  = 25
 # data points     = 401
 # variables       = 3
 chi-square       = 29.9943157
 reduced chi-square = 0.07536260
 Akaike info crit = -1033.77437
 Bayesian info crit = -1021.79248
[[Variables]]
 amplitude: 30.3135620 +/- 0.15712686 (0.52%) (init = 43.62238)
 center: 9.24277047 +/- 0.00737496 (0.08%) (init = 9.25)
 sigma: 1.23218359 +/- 0.00737496 (0.60%) (init = 1.35)
 fwhm: 2.90157056 +/- 0.01736670 (0.60%) == '2.3548200*sigma'
 height: 9.81457817 +/- 0.05087283 (0.52%) == '0.3989423*amplitude/max(1e-15, sigma)' -= sigma
[[Correlations]]
 (unreported correlations are < 0.250)
 C(amplitude, sigma) = 0.577
```

We see a few interesting differences from the results of the previous chapter. First, the parameter names are longer. Second, there are fwhm and height parameters, to give the full-width-at-half-maximum and maximum peak height, respectively. And third, the automated initial guesses are pretty good. A plot of the fit:
shows a decent match to the data – the fit worked with no explicit setting of initial parameter values. Looking more closely, the fit is not perfect, especially in the tails of the peak, suggesting that a different peak shape, with longer tails, should be used. Perhaps a Lorentzian would be better? To do this, we simply replace GaussianModel with LorentzianModel to get a LorentzianModel:

```python
from lmfit.models import LorentzianModel
mod = LorentzianModel()
```

with the rest of the script as above. Perhaps predictably, the first thing we try gives results that are worse by comparing the fit statistics:

```
[[Model]]
  Model(lorentzian)
[[Fit Statistics]]
  # fitting method = leastsq
  # function evals = 21
  # data points = 401
  # variables = 3
  chi-square = 53.7535387
  reduced chi-square = 0.13505914
  Akaike info crit = -799.830322
  Bayesian info crit = -787.848438
[[Variables]]
  amplitude: 38.9727645 +/- 0.31386183 (0.81%) (init = 54.52798)
  center: 9.24438944 +/- 0.00927619 (0.10%) (init = 9.25)
  sigma: 1.15483925 +/- 0.01315659 (1.14%) (init = 1.35)
  fwhm: 2.30967850 +/- 0.02631318 (1.14%) == '2.0000000 * sigma'
  height: 10.7421156 +/- 0.08633945 (0.80%) == '0.3183099 * amplitude/max(1e-15, sigma)'
[[Correlations]] (unreported correlations are < 0.250)
  C(amplitude, sigma) = 0.709
```

and also by visual inspection of the fit to the data (figure below).
The tails are now too big, and the value for χ^2 almost doubled. A Voigt model does a better job. Using `VoigtModel`, this is as simple as using:

```python
from lmfit.models import VoigtModel
mod = VoigtModel()
```

with all the rest of the script as above. This gives:

```
[[Model]]
  Model(voigt)
[[Fit Statistics]]
  # fitting method = leastsq
  # function evals = 21
  # data points = 401
  # variables = 3
  chi-square = 14.5448627
  reduced chi-square = 0.03654488
  Akaike info crit = -1324.00615
  Bayesian info crit = -1312.02427
[[Variables]]
  amplitude: 35.7554146 +/- 0.13861321 (0.39%) (init = 65.43358)
  center: 9.24411150 +/- 0.00505482 (0.05%) (init = 9.25)
  sigma: 0.73015627 +/- 0.00368460 (0.50%) == 'sigma'
  gamma: 0.73015627 +/- 0.00368460 (0.50%) == 'gamma'
  fwhm: 2.62950494 +/- 0.00806900 (0.31%) == '1.0692*gamma+sqrt(0.8664*gamma**2+5.545083*sigma**2)'
  height: 10.2203969 +/- 0.03009415 (0.29%) == '(amplitude/(max(1e-15, sigma*sqrt(2*pi))))*wofz((1j*gamma)/(max(1e-15, sigma*sqrt(2))))\') real'
[[Correlations]] (unreported correlations are < 0.250)
  C(amplitude, sigma) = 0.651
```

which has a much better value for χ^2 and the other goodness-of-fit measures, and an obviously better match to the data as seen in the figure below (left).
Fit to peak with Voigt model (left) and Voigt model with \(\gamma \) varying independently of \(\sigma \) (right).

Can we do better? The Voigt function has a \(\gamma \) parameter (\(\text{gamma} \)) that can be distinct from \(\sigma \). The default behavior used above constrains \(\gamma \) to have exactly the same value as \(\sigma \). If we allow these to vary separately, does the fit improve? To do this, we have to change the \(\gamma \) parameter from a constrained expression and give it a starting value using something like:

```python
mod = VoigtModel()
pars = mod.guess(y, x=x)
pars['gamma'].set(value=0.7, vary=True, expr='')
```

which gives:

```
[[Model]]
  Model(voigt)
[[Fit Statistics]]
  # fitting method = leastsq
  # function evals = 21
  # data points = 401
  # variables = 4
  chi-square = 10.9301767
  reduced chi-square = 0.02753193
  Akaike info crit = -1436.57602
  Bayesian info crit = -1420.60017
[[Variables]]
  amplitude: 34.1914737 +/- 0.17946860 (0.52%) (init = 65.43358)
  center: 9.24374847 +/- 0.00441903 (0.05%) (init = 9.25)
  sigma: 0.89518909 +/- 0.01415450 (1.58%) (init = 0.8775)
  gamma: 0.52540199 +/- 0.01857955 (3.54%) (init = 0.7)
  fwhm: 2.72573635 +/- 0.01363980 (0.50%) == '1.0692*gamma+sqrt(0.8664*gamma**2+5.545083*sigma**2)'
  height: 10.0872204 +/- 0.03482129 (0.35%) == '((amplitude/(max(1e-15,\sigma))*wofz((1j*gamma)/(max(1e-15, sigma*sqrt(2))))).real'
[[Correlations]] (unreported correlations are < 0.250)
  C(sigma, gamma) = -0.928
  C(amplitude, gamma) = 0.821
  C(amplitude, sigma) = -0.651
```

and the fit shown on the right above.

Comparing the two fits with the Voigt function, we see that \(\chi^2 \) is definitely improved with a separately varying \(\gamma \) parameter. In addition, the two values for \(\gamma \) and \(\sigma \) differ significantly – well outside the estimated
uncertainties. More compelling, reduced χ^2 is improved even though a fourth variable has been added to the fit. In the simplest statistical sense, this suggests that γ is a significant variable in the model. In addition, we can use both the Akaike or Bayesian Information Criteria (see Akaike and Bayesian Information Criteria) to assess how likely the model with variable γ is to explain the data than the model with γ fixed to the value of σ. According to theory, $\exp\left(-\frac{(\text{AIC}_1 - \text{AIC}_0)}{2}\right)$ gives the probability that a model with AIC1 is more likely than a model with AIC0. For the two models here, with AIC values of -1436 and -1324 (Note: if we had more carefully set the value for weights based on the noise in the data, these values might be positive, but there difference would be roughly the same), this says that the model with γ fixed to σ has a probability less than $5.e-25$ of being the better model.

8.9 Example 2: Fit data to a Composite Model with pre-defined models

Here, we repeat the point made at the end of the last chapter that instances of `Model` class can be added together to make a composite model. By using the large number of built-in models available, it is therefore very simple to build models that contain multiple peaks and various backgrounds. An example of a simple fit to a noisy step function plus a constant:

```python
# <examples/doc_builtinmodels_stepmodel.py>
import matplotlib.pyplot as plt
import numpy as np

from lmfit.models import LinearModel, StepModel

x = np.linspace(0, 10, 201)
y = np.ones_like(x)
y[:48] = 0.0
y[48:77] = np.arange(77-48)/(77.0-48)
np.random.seed(0)
y = 110.2 * (y + 9e-3*np.random.randn(x.size)) + 12.0 + 2.22*x

step_mod = StepModel(form='erf', prefix='step_')
line_mod = LinearModel(prefix='line_')

pars = line_mod.make_params(intercept=y.min(), slope=0)
pars += step_mod.guess(y, x=x, center=2.5)

mod = step_mod + line_mod
out = mod.fit(y, pars, x=x)

print(out.fit_report())

plt.plot(x, y, 'b')
plt.plot(x, out.init_fit, 'k--', label='initial fit')
plt.plot(x, out.best_fit, 'r-', label='best fit')
plt.legend(loc='best')
plt.show()
# <end examples/doc_builtinmodels_stepmodel.py>
```

After constructing step-like data, we first create a `StepModel` telling it to use the erf form (see details above), and a `ConstantModel`. We set initial values, in one case using the data and `guess()` method for the initial step function parameters, and `make_params()` arguments for the linear component. After making a composite model, we run `fit()` and report the results, which gives:
Non-Linear Least-Squares Minimization and Curve-Fitting for Python, Release 1.0.2

([Model])
(Model(step, prefix='step_', form='erf') + Model(linear, prefix='line_'))

([Fit Statistics])
fitting method = leastsq
function evals = 49
data points = 201
variables = 5
chi-square = 593.709622
reduced chi-square = 3.02913072
Akaike info crit = 227.700173
Bayesian info crit = 244.216698

([Variables])
line_slope: 1.87164656 +/- 0.09318713 (4.98%) (init = 0)
line_intercept: 12.0964833 +/- 0.27606235 (2.28%) (init = 11.58574)
step_amplitude: 112.858376 +/- 0.65392947 (0.58%) (init = 134.7378)
step_center: 3.13494792 +/- 0.00516615 (0.16%) (init = 2.5)
step_sigma: 0.67392841 +/- 0.01091168 (1.62%) (init = 1.428571)

([Correlations]) (unreported correlations are < 0.100)
C(line_slope, step_amplitude) = -0.879
C(step_amplitude, step_sigma) = 0.564
C(line_slope, step_center) = -0.457
C(line_slope, line_intercept) = -0.309
C(line_slope, step_center) = -0.234
C(line_slope, step_sigma) = -0.137
C(line_intercept, step_amplitude) = -0.117
C(step_amplitude, step_center) = 0.109

with a plot of

[Image of a plot with initial fit and best fit]
8.10 Example 3: Fitting Multiple Peaks – and using Prefixes

As shown above, many of the models have similar parameter names. For composite models, this could lead to a problem of having parameters for different parts of the model having the same name. To overcome this, each Model can have a prefix attribute (normally set to a blank string) that will be put at the beginning of each parameter name.

To illustrate, we fit one of the classic datasets from the NIST StRD suite involving a decaying exponential and two Gaussians.

```python
# <examples/doc builtinmodels_nistgauss.py>
import matplotlib.pyplot as plt
import numpy as np

from lmfit.models import ExponentialModel, GaussianModel

dat = np.loadtxt('NIST_Gauss2.dat')
x = dat[:, 1]
y = dat[:, 0]

exp_mod = ExponentialModel(prefix='exp_')
pars = exp_mod.guess(y, x=x)

gauss1 = GaussianModel(prefix='g1_')
pars.update(gauss1.make_params())
pars['g1_center'].set(value=105, min=75, max=125)
pars['g1_sigma'].set(value=15, min=3)
pars['g1_amplitude'].set(value=2000, min=10)

gauss2 = GaussianModel(prefix='g2_')
pars.update(gauss2.make_params())
pars['g2_center'].set(value=155, min=125, max=175)
pars['g2_sigma'].set(value=15, min=3)
pars['g2_amplitude'].set(value=2000, min=10)

mod = gauss1 + gauss2 + exp_mod

init = mod.eval(pars, x=x)
out = mod.fit(y, pars, x=x)
print(out.fit_report(min_correl=0.5))

fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))
axes[0].plot(x, y, 'b')
axes[0].plot(x, init, 'k--', label='initial fit')
axes[0].plot(x, out.best_fit, 'r-', label='best fit')
axes[0].legend(loc='best')

comps = out.eval_components(x=x)
axes[1].plot(x, y, 'b')
axes[1].plot(x, comps['g1_'], 'g--', label='Gaussian component 1')
axes[1].plot(x, comps['g2_'], 'm--', label='Gaussian component 2')
axes[1].plot(x, comps['exp_'], 'k--', label='Exponential component')
axes[1].legend(loc='best')

plt.show()
# <end examples/doc builtinmodels_nistgauss.py>
```
where we give a separate prefix to each model (they all have an amplitude parameter). The prefix values are attached transparently to the models.

Note that the calls to `make_param()` used the bare name, without the prefix. We could have used the prefixes, but because we used the individual model `gauss1` and `gauss2`, there was no need.

Note also in the example here that we explicitly set bounds on many of the parameter values.

The fit results printed out are:

```python
[[Model]]
    ((Model(gaussian, prefix='g1_') + Model(gaussian, prefix='g2_')) +
    Model(exponential, prefix='exp_'))
[[Fit Statistics]]
    # fitting method = leastsq
    # function evals = 46
    # data points = 250
    # variables = 8
    chi-square = 1247.52821
    reduced chi-square = 5.15507524
    Akaike info crit = 417.864631
    Bayesian info crit = 446.036318
[[Variables]]
    exp_amplitude: 99.0183283 +/- 0.53748735 (0.54%) (init = 162.2102)
    exp_decay: 90.9508860 +/- 1.10310509 (1.21%) (init = 93.24905)
    gl_amplitude: 4257.77319 +/- 42.3833645 (1.00%) (init = 2000)
    gl_center: 107.030954 +/- 0.15006786 (0.14%) (init = 105)
    gl_sigma: 16.6725753 +/- 0.16048161 (0.96%) (init = 15)
    gl_fwhm: 39.2609138 +/- 0.37790530 (0.96%) == '2.3548200 * gl_sigma'
    gl_height: 101.880231 +/- 0.59217099 (0.58%) == '0.3989423 * gl_amplitude/
    max(1e-15, gl_sigma)'
    g2_amplitude: 2493.41771 +/- 36.1694731 (1.45%) (init = 2000)
    g2_center: 153.270101 +/- 0.19466743 (0.13%) (init = 155)
    g2_sigma: 13.8069484 +/- 0.18679415 (1.35%) (init = 15)
    g2_fwhm: 32.5128783 +/- 0.43986659 (1.35%) == '2.3548200 * g2_sigma'
    g2_height: 72.0455934 +/- 0.61722094 (0.86%) == '0.3989423 * g2_amplitude/
    max(1e-15, g2_sigma)'
[[Correlations]] (unreported correlations are < 0.100)
    C(gl_amplitude, gl_sigma) = 0.824
    C(g2_amplitude, g2_sigma) = 0.815
    C(exp_amplitude, exp_decay) = -0.695
    C(gl_sigma, g2_center) = 0.684
    C(gl_center, g2_amplitude) = -0.669
    C(gl_center, g2_sigma) = -0.652
    C(gl_amplitude, g2_center) = 0.648
    C(gl_center, g2_center) = 0.621
    C(gl_center, gl_sigma) = 0.507
    C(exp_decay, gl_amplitude) = -0.507
    C(gl_sigma, g2_amplitude) = -0.491
    C(g2_center, g2_sigma) = -0.489
    C(gl_sigma, g2_sigma) = -0.483
    C(g2_amplitude, g2_center) = -0.476
    C(exp_decay, g2_amplitude) = -0.427
    C(gl_amplitude, gl_center) = 0.418
    C(gl_amplitude, g2_sigma) = -0.401
    C(gl_amplitude, g2_amplitude) = -0.307
    C(exp_amplitude, g2_amplitude) = 0.282
    C(exp_decay, gl_sigma) = -0.252
    C(exp_decay, g2_sigma) = -0.233
```

(continues on next page)
We get a very good fit to this problem (described at the NIST site as of average difficulty, but the tests there are generally deliberately challenging) by applying reasonable initial guesses and putting modest but explicit bounds on the parameter values. The overall fit is shown on the left, with its individual components displayed on the right:

One final point on setting initial values. From looking at the data itself, we can see the two Gaussian peaks are reasonably well separated but do overlap. Furthermore, we can tell that the initial guess for the decaying exponential component was poorly estimated because we used the full data range. We can simplify the initial parameter values by using this, and by defining an `index_of()` function to limit the data range. That is, with:

```python
def index_of(arrval, value):
    """Return index of array *at or below* value."""
    if value < min(arrval):
        return 0
    return max(np.where(arrval <= value)[0])
```

```python
ix1 = index_of(x, 75)
ix2 = index_of(x, 135)
ix3 = index_of(x, 175)
```

```python
exp_mod.guess(y[:ix1], x=x[:ix1])
gauss1.guess(y[ix1:ix2], x=x[ix1:ix2])
gauss2.guess(y[ix2:ix3], x=x[ix2:ix3])
```

we can get a better initial estimate (see below).
The fit converges to the same answer, giving to identical values (to the precision printed out in the report), but in fewer steps, and without any bounds on parameters at all:

```python
[[Model]]
  ((Model(gaussian, prefix='g1_') + Model(gaussian, prefix='g2_')) +
   Model(exponential, prefix='exp_'))
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 37
# data points = 250
# variables = 8
chi-square = 1247.52821
reduced chi-square = 5.15507524
Akaike info crit = 417.864631
Bayesian info crit = 446.036318
[[Variables]]
exp_amplitude: 99.0183270 +/- 0.53748905 (0.54%) (init = 94.53724)
exp_decay: 90.9508890 +/- 1.10310483 (1.21%) (init = 111.1985)
g1_amplitude: 4257.77343 +/- 42.3836433 (1.00%) (init = 3189.648)
g1_center: 107.030956 +/- 0.15006873 (0.14%) (init = 106.5)
g1_sigma: 16.6725765 +/- 0.16048227 (0.96%) (init = 14.5)
g1_fwhm: 39.2609166 +/- 0.37790686 (0.96%) == '2.3548200 *g1_sigma'
g1_height: 101.880230 +/- 0.59217233 (0.58%) == '0.3989423 *g1_amplitude/

[[Correlations]] (unreported correlations are < 0.100)
C(g1_amplitude, g1_sigma) = 0.824
C(g2_amplitude, g2_sigma) = 0.815
C(exp_amplitude, exp_decay) = -0.695
```

(continues on next page)
C(g1_sigma, g2_center) = 0.684
C(g1_center, g2_amplitude) = -0.669
C(g1_center, g2_sigma) = -0.652
C(g1_amplitude, g2_center) = 0.648
C(g1_center, g2_center) = 0.621
C(g1_center, g1_sigma) = 0.507
C(exp_decay, g1_amplitude) = -0.507
C(g1_sigma, g2_amplitude) = -0.491
C(g2_center, g2_sigma) = -0.489
C(g1_center, g2_sigma) = -0.483
C(g2_amplitude, g2_center) = -0.476
C(exp_decay, g2_amplitude) = -0.427
C(g1_amplitude, g1_center) = 0.418
C(g1_amplitude, g2_sigma) = -0.401
C(g1_amplitude, g2_amplitude) = -0.307
C(exp_amplitude, g2_amplitude) = 0.282
C(exp_decay, g1_sigma) = -0.252
C(exp_decay, g2_sigma) = -0.233
C(exp_amplitude, g2_sigma) = 0.171
C(exp_decay, g2_center) = -0.151
C(exp_amplitude, g1_amplitude) = 0.148
C(exp_decay, g1_center) = 0.105

This script is in the file doc_builtinmodels_nistgauss2.py in the examples folder, and the figure above shows an improved initial estimate of the data.
The lmfit confidence module allows you to explicitly calculate confidence intervals for variable parameters. For most models, it is not necessary since the estimation of the standard error from the estimated covariance matrix is normally quite good.

But for some models, the sum of two exponentials for example, the approximation begins to fail. For this case, lmfit has the function `conf_interval()` to calculate confidence intervals directly. This is substantially slower than using the errors estimated from the covariance matrix, but the results are more robust.

9.1 Method used for calculating confidence intervals

The F-test is used to compare our null model, which is the best fit we have found, with an alternate model, where one of the parameters is fixed to a specific value. The value is changed until the difference between χ^2_0 and χ^2_f can’t be explained by the loss of a degree of freedom within a certain confidence.

$$F(P_{fix}, N - P) = \left(\frac{\chi_f^2}{\chi_0^2} - 1 \right) \frac{N - P}{P_{fix}}$$

N is the number of data points and P the number of parameters of the null model. P_{fix} is the number of fixed parameters (or to be more clear, the difference of number of parameters between our null model and the alternate model).

Adding a log-likelihood method is under consideration.

9.2 A basic example

First we create an example problem:

```python
import numpy as np
import lmfit

x = np.linspace(0.3, 10, 100)
np.random.seed(0)
y = 1/(0.1*x) + 2 + 0.1*np.random.randn(x.size)
pars = lmfit.Parameters()
pars.add_many(('a', 0.1), ('b', 1))

def residual(p):
    return 1/(p['a']*x) + p['b'] - y
```
before we can generate the confidence intervals, we have to run a fit, so that the automated estimate of the standard
erors can be used as a starting point:

```python
mini = lmfit.Minimizer(residual, pars)
result = mini.minimize()
print(lmfit.fit_report(result.params))
```

```
[[Variables]]
a: 0.09943896 +/- 1.9322e-04 (0.19%) (init = 0.1)
b: 1.98476942 +/- 0.01222678 (0.62%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
  C(a, b) = 0.601
```

Now it is just a simple function call to calculate the confidence intervals:

```python
ci = lmfit.conf_interval(mini, result)
lmfit.printfuncs.report_ci(ci)
```

```
99.73%  95.45%  68.27%    _BEST_    68.27%  95.45%  99.73%
a:  -0.00059  -0.00039  -0.00019  0.09944   +0.00019  +0.00039  +0.00060
b:  -0.03766  -0.02478  -0.01230  1.98477   +0.01230  +0.02478  +0.03761
```

This shows the best-fit values for the parameters in the _BEST_ column, and parameter values that are at the varying
confidence levels given by steps in \(\sigma \). As we can see, the estimated error is almost the same, and the uncertainties are
well behaved: Going from 1-\(\sigma \) (68% confidence) to 3-\(\sigma \) (99.7% confidence) uncertainties is fairly linear. It can also
be seen that the errors are fairly symmetric around the best fit value. For this problem, it is not necessary to calculate
confidence intervals, and the estimates of the uncertainties from the covariance matrix are sufficient.

9.3 Working without standard error estimates

Sometimes the estimation of the standard errors from the covariance matrix fails, especially if values are near given
bounds. Hence, to find the confidence intervals in these cases, it is necessary to set the errors by hand. Note that the
standard error is only used to find an upper limit for each value, hence the exact value is not important.

To set the step-size to 10% of the initial value we loop through all parameters and set it manually:

```python
for p in result.params:
    result.params[p].stderr = abs(result.params[p].value * 0.1)
```

9.4 An advanced example for evaluating confidence intervals

Now we look at a problem where calculating the error from approximated covariance can lead to misleading result –
the same double exponential problem shown in `Minimizer.emcee()` - calculating the posterior probability distribution
of parameters. In fact such a problem is particularly hard for the Levenberg-Marquardt method, so we first estimate
the results using the slower but robust Nelder-Mead method. We can then compare the uncertainties computed (if the
numdiff tools package is installed) with those estimated using Levenberg-Marquardt around the previously found
solution. We can also compare to the results of using emcee.

```
# <examples/doc_confidence_advanced.py>
import matplotlib.pyplot as plt
import numpy as np
```

(continues on next page)
import lmfit

x = np.linspace(1, 10, 250)
np.random.seed(0)
y = 3.0*np.exp(-x/2) - 5.0*np.exp(-(x-0.1)/10.) + 0.1*np.random.randn(x.size)

p = lmfit.Parameters()
p.add_many(('a1', 4.), ('a2', 4.), ('t1', 3.), ('t2', 3.))

def residual(p):
 return p['a1']*np.exp(-x/p['t1']) + p['a2']*np.exp(-(x-0.1)/p['t2']) - y

create Minimizer
mini = lmfit.Minimizer(residual, p, nan_policy='propagate')

first solve with Nelder-Mead algorithm
out1 = mini.minimize(method='Nelder')

then solve with Levenberg-Marquardt using the
Nelder-Mead solution as a starting point
out2 = mini.minimize(method='leastsq', params=out1.params)

lmfit.report_fit(out2.params, min_correl=0.5)

 ci, trace = lmfit.conf_interval(mini, out2, sigmas=[1, 2], trace=True)
lmfit.printfuncs.report_ci(ci)

plot data and best fit
plt.figure()
plt.plot(x, y, 'b')
plt.plot(x, residual(out2.params) + y, 'r-')

plot confidence intervals (a1 vs t2 and a2 vs t2)
fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))
cx, cy, grid = lmfit.conf_interval2d(mini, out2, 'a1', 't2', 30, 30)
ctp = axes[0].contourf(cx, cy, grid, np.linspace(0, 1, 11))
fig.colorbar(ctp, ax=axes[0])
axes[0].set_xlabel('a1')
axes[0].set_ylabel('t2')

cx, cy, grid = lmfit.conf_interval2d(mini, out2, 'a2', 't2', 30, 30)
ctp = axes[1].contourf(cx, cy, grid, np.linspace(0, 1, 11))
fig.colorbar(ctp, ax=axes[1])
axes[1].set_xlabel('a2')
axes[1].set_ylabel('t2')

plot dependence between two parameters
fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))
cx1, cy1, prob = trace['a1']['a1'], trace['a1']['t2'], trace['a1']['prob']
cx2, cy2, prob2 = trace['t2']['t2'], trace['t2']['a1'], trace['t2']['prob']

axes[0].scatter(cx1, cy1, c=prob, s=30)
axes[0].set_xlabel('a1')
axes[0].set_ylabel('t2')

9.4. An advanced example for evaluating confidence intervals 125
axes[1].scatter(cx2, cy2, c=prob2, s=30)
axes[1].set_xlabel('t2')
axes[1].set_ylabel('a1')
plt.show()
<end examples/doc_confidence_advanced.py>

which will report:

```
[[Variables]]
a1: 2.98622120 +/- 0.14867187 (4.98%) (init = 2.986237)
a2: -4.33526327 +/- 0.11527506 (2.66%) (init = -4.335256)
t1: 1.30994233 +/- 0.13121177 (10.02%) (init = 1.309932)
t2: 11.8240351 +/- 0.46316470 (3.92%) (init = 11.82408)
[[Correlations]] (unreported correlations are < 0.500)
C(a2, t2) = 0.987
C(a2, t1) = -0.925
C(t1, t2) = -0.881
C(a1, t1) = -0.599

95.45% 68.27% _BEST_ 68.27% 95.45%
a1: -0.27286 -0.14165 2.98622 +0.16353 +0.36343
a2: -0.30444 -0.13219 -4.33526 +0.10688 +0.19683
t1: -0.23392 -0.12494 1.30994 +0.14660 +0.32369
t2: -1.01943 -0.48820 11.82404 +0.46041 +0.90441
```

Again we called `conf_interval()`, this time with tracing and only for 1- and 2-σ. Comparing these two different estimates, we see that the estimate for `a1` is reasonably well approximated from the covariance matrix, but the estimates for `a2` and especially for `t1` and `t2` are very asymmetric and that going from 1 σ (68% confidence) to 2 σ (95% confidence) is not very predictable.

Plots of the confidence region are shown in the figures below for `a1` and `t2` (left), and `a2` and `t2` (right):

Neither of these plots is very much like an ellipse, which is implicitly assumed by the approach using the covariance matrix. The plots actually look quite a bit like those found with MCMC and shown in the “corner plot” in `Mini- mizer.emcee()` - calculating the posterior probability distribution of parameters. In fact, comparing the confidence interval results here with the results for the 1- and 2-σ error estimated with emcee, we can see that the agreement is pretty good and that the asymmetry in the parameter distributions are reflected well in the asymmetry of the uncertain-
The trace returned as the optional second argument from `conf_interval()` contains a dictionary for each variable parameter. The values are dictionaries with arrays of values for each variable, and an array of corresponding probabilities for the corresponding cumulative variables. This can be used to show the dependence between two parameters:

```python
fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))
cx1, cy1, prob = trace['a1']['a1'], trace['a1']['t2'], trace['a1']['prob']
cx2, cy2, prob2 = trace['t2']['t2'], trace['t2']['a1'], trace['t2']['prob']
axes[0].scatter(cx1, cy1, c=prob, s=30)
axes[0].set_xlabel('a1')
axes[0].set_ylabel('t2')
axes[1].scatter(cx2, cy2, c=prob2, s=30)
axes[1].set_xlabel('t2')
axes[1].set_ylabel('a1')
plt.show()
```

which shows the trace of values:

As an alternative/complement to the confidence intervals, the `Minimizer.emcee()` method uses Markov Chain Monte Carlo to sample the posterior probability distribution. These distributions demonstrate the range of solutions that the data supports and we refer to `Minimizer.emcee()` - calculating the posterior probability distribution of parameters where this methodology was used on the same problem.

Credible intervals (the Bayesian equivalent of the frequentist confidence interval) can be obtained with this method. MCMC can be used for model selection, to determine outliers, to marginalize over nuisance parameters, etcetera. For example, you may have fractionally underestimated the uncertainties on a dataset. MCMC can be used to estimate the true level of uncertainty on each data point. A tutorial on the possibilities offered by MCMC can be found at

1 https://jakevdp.github.io/blog/2014/03/11/frequentism-and-bayesianism-a-practical-intro/
9.5 Confidence Interval Functions

`conf_interval(minimizer, result, p_names=None, sigmas=None, trace=False, maxiter=200, verbose=False, prob_func=None)`

Calculate the confidence interval (CI) for parameters.

The parameter for which the CI is calculated will be varied, while the remaining parameters are re-optimized to minimize the chi-square. The resulting chi-square is used to calculate the probability with a given statistic (e.g., F-test). This function uses a 1d-rootfinder from SciPy to find the values resulting in the searched confidence region.

Parameters

- `minimizer (Minimizer)` – The minimizer to use, holding objective function.
- `result (MinimizerResult)` – The result of running `minimize()`.
- `p_names (list, optional)` – Names of the parameters for which the CI is calculated. If None (default), the CI is calculated for every parameter.
- `sigmas (list, optional)` – The sigma-levels to find (default is [1, 2, 3]). See Notes below.
- `trace (bool, optional)` – Defaults to False; if True, each result of a probability calculation is saved along with the parameter. This can be used to plot so-called “profile traces”.
- `maxiter (int, optional)` – Maximum of iteration to find an upper limit (default is 200).
- `verbose (bool, optional)` – Print extra debugging information (default is False).
- `prob_func (None or callable, optional)` – Function to calculate the probability from the optimized chi-square. Default is None and uses the built-in function `f_compare` (i.e., F-test).

Returns

- `output (dict)` – A dictionary containing a list of `(sigma, vals)`-tuples for each parameter.
- `trace_dict (dict, optional)` – Only if trace is True. Is a dictionary, the key is the parameter which was fixed. The values are again a dict with the names as keys, but with an additional key ‘prob’. Each contains an array of the corresponding values.

See also:

`conf_interval2d`

Notes

The values for `sigma` are taken as the number of standard deviations for a normal distribution and converted to probabilities. That is, the default `sigma=[1, 2, 3]` will use probabilities of 0.6827, 0.9545, and 0.9973. If any of the sigma values is less than 1, that will be interpreted as a probability. That is, a value of 1 and 0.6827 will give the same results, within precision.
Examples

```python
>>> from lmfit.printfuncs import *
>>> mini = minimize(some_func, params)
>>> mini.leastsq()
True
>>> report_errors(params)
... #report
>>> ci = conf_interval(mini)
>>> report_ci(ci)
... #report
```

Now with quantiles for the sigmas and using the trace.

```python
>>> ci, trace = conf_interval(mini, sigmas=[0.5, 1, 2, 3], trace=True)
>>> fixed = trace['para1']['para1']
>>> free = trace['para1']['not_para1']
>>> prob = trace['para1']['prob']
```

This makes it possible to plot the dependence between free and fixed parameters.

conf_interval2d (*minimizer, result, x_name, y_name, nx=10, ny=10, limits=None, prob_func=None*)

Calculate confidence regions for two fixed parameters.

The method itself is explained in *conf_interval*: here we are fixing two parameters.

Parameters

- **minimizer** (*Minimizer*) – The minimizer to use, holding objective function.
- **result** (*MinimizerResult*) – The result of running minimize().
- **x_name** (*str*) – The name of the parameter which will be the x direction.
- **y_name** (*str*) – The name of the parameter which will be the y direction.
- **nx** (*int, optional*) – Number of points in the x direction.
- **ny** (*int, optional*) – Number of points in the y direction.
- **limits** (*tuple, optional*) – Should have the form ((x_upper, x_lower), (y_upper, y_lower)). If not given, the default is 5.0*std-errors in each direction.
- **prob_func** (*None or callable, optional*) – Function to calculate the probability from the optimized chi-square. Default is None and uses the built-in function *f_compare* (i.e., F-test).

Returns

- **x** (*numpy.ndarray*) – X-coordinates (same shape as nx).
- **y** (*numpy.ndarray*) – Y-coordinates (same shape as ny).
- **grid** (*numpy.ndarray*) – Grid containing the calculated probabilities (with shape (nx, ny)).

See also:

- *conf_interval*

9.5. Confidence Interval Functions
Examples

```python
>>> mini = Minimizer(some_func, params)
>>> result = mini.leastsq()
>>> x, y, gr = conf_interval2d(mini, result, 'para1', 'para2')
>>> plt.contour(x, y, gr)
```

ci_report (ci, with_offset=True, ndigits=5)
Return text of a report for confidence intervals.

Parameters

- **ci** (dict) – The result of conf_interval(): a dictionary containing a list of (sigma, vals)-tuples for each parameter.

- **with_offset** (bool, optional) – Whether to subtract best value from all other values (default is True).

- **ndigits** (int, optional) – Number of significant digits to show (default is 5).

Returns Text of formatted report on confidence intervals.

Return type str
This section describes the implementation of Parameter bounds. The MINPACK-1 implementation used in scipy.optimize.leastsq for the Levenberg-Marquardt algorithm does not explicitly support bounds on parameters, and expects to be able to fully explore the available range of values for any Parameter. Simply placing hard constraints (that is, resetting the value when it exceeds the desired bounds) prevents the algorithm from determining the partial derivatives, and leads to unstable results.

Instead of placing such hard constraints, bounded parameters are mathematically transformed using the formulation devised (and documented) for MINUIT. This is implemented following (and borrowing heavily from) the leastsqbound from J. J. Helmus. Parameter values are mapped from internally used, freely variable values P_{internal} to bounded parameters P_{bounded}. When both min and max bounds are specified, the mapping is:

\[
P_{\text{internal}} = \arcsin \left(\frac{2(P_{\text{bounded}} - \min)}{(\max - \min)} - 1 \right)
\]

\[
P_{\text{bounded}} = \min + \left(\sin(P_{\text{internal}}) + 1 \right) \frac{(\max - \min)}{2}
\]

With only an upper limit \max supplied, but \min left unbounded, the mapping is:

\[
P_{\text{internal}} = \sqrt{(\max - P_{\text{bounded}} + 1)^2 - 1}
\]

\[
P_{\text{bounded}} = \max + 1 - \sqrt{P_{\text{internal}}^2 + 1}
\]

With only a lower limit \min supplied, but \max left unbounded, the mapping is:

\[
P_{\text{internal}} = \sqrt{(P_{\text{bounded}} - \min + 1)^2 - 1}
\]

\[
P_{\text{bounded}} = \min - 1 + \sqrt{P_{\text{internal}}^2 + 1}
\]

With these mappings, the value for the bounded Parameter cannot exceed the specified bounds, though the internally varied value can be freely varied.

It bears repeating that code from leastsqbound was adopted to implement the transformation described above. The challenging part (thanks again to Jonathan J. Helmus!) here is to re-transform the covariance matrix so that the uncertainties can be estimated for bounded Parameters. This is included by using the derivate $dP_{\text{internal}}/dP_{\text{bounded}}$ from the equations above to re-scale the Jacobin matrix before constructing the covariance matrix from it. Tests show that this re-scaling of the covariance matrix works quite well, and that uncertainties estimated for bounded are quite reasonable. Of course, if the best fit value is very close to a boundary, the derivative estimated uncertainty and correlations for that parameter may not be reliable.

The MINUIT documentation recommends caution in using bounds. Setting bounds can certainly increase the number of function evaluations (and so computation time), and in some cases may cause some instabilities, as the range of acceptable parameter values is not fully explored. On the other hand, preliminary tests suggest that using max and min to set clearly outlandish bounds does not greatly affect performance or results.
USING MATHEMATICAL CONSTRAINTS

Being able to fix variables to a constant value or place upper and lower bounds on their values can greatly simplify modeling real data. These capabilities are key to lmfit’s Parameters. In addition, it is sometimes highly desirable to place mathematical constraints on parameter values. For example, one might want to require that two Gaussian peaks have the same width, or have amplitudes that are constrained to add to some value. Of course, one could rewrite the objective or model function to place such requirements, but this is somewhat error prone, and limits the flexibility so that exploring constraints becomes laborious.

To simplify the setting of constraints, Parameters can be assigned a mathematical expression of other Parameters, builtin constants, and builtin mathematical functions that will be used to determine its value. The expressions used for constraints are evaluated using the asteval module, which uses Python syntax, and evaluates the constraint expressions in a safe and isolated namespace.

This approach to mathematical constraints allows one to not have to write a separate model function for two Gaussians where the two sigma values are forced to be equal, or where amplitudes are related. Instead, one can write a more general two Gaussian model (perhaps using GaussianModel) and impose such constraints on the Parameters for a particular fit.

11.1 Overview

Just as one can place bounds on a Parameter, or keep it fixed during the fit, so too can one place mathematical constraints on parameters. The way this is done with lmfit is to write a Parameter as a mathematical expression of the other parameters and a set of pre-defined operators and functions. The constraint expressions are simple Python statements, allowing one to place constraints like:

```python
from lmfit import Parameters
pars = Parameters()
pars.add('frac_curve1', value=0.5, min=0, max=1)
pars.add('frac_curve2', expr='1-frac_curve1')
```

as the value of the frac_curve1 parameter is updated at each step in the fit, the value of frac_curve2 will be updated so that the two values are constrained to add to 1.0. Of course, such a constraint could be placed in the fitting function, but the use of such constraints allows the end-user to modify the model of a more general-purpose fitting function.

Nearly any valid mathematical expression can be used, and a variety of built-in functions are available for flexible modeling.
11.2 Supported Operators, Functions, and Constants

The mathematical expressions used to define constrained Parameters need to be valid Python expressions. As you would expect, the operators +, -, *, /, and **, are supported. In fact, a much more complete set can be used, including Python’s bit- and logical operators:

+ , -, *, /, **, &, |, ^, <<, >>, %, and, or,
==, >, >=, <, <=, !=, ~, not, is, is not, in, not in

The values for e (2.7182818...) and pi (3.1415926...) are available, as are several supported mathematical and trigonometric function:

abs, acos, acosh, asin, asinh, atan, atan2, atanh, ceil,
copysign, cos, cosh, degrees, exp, fabs, factorial,
floor, fmod, fsum, hypot, isinf, isnan, ldexp,
log, log10, log1p, max, min, modf, pow, radians, sin,
sinh, sqrt, tan, tanh, trunc

In addition, all Parameter names will be available in the mathematical expressions. Thus, with parameters for a few peak-like functions:

```python
pars = Parameters()
pars.add('amp_1', value=0.5, min=0, max=1)
pars.add('cen_1', value=2.2)
pars.add('wid_1', value=0.2)
```

The following expression are all valid:

```python
pars.add('amp_2', expr='(2.0 - amp_1**2)')
pars.add('wid_2', expr='sqrt(pi)*wid_1')
pars.add('cen_2', expr='cen_1 * wid_2 / max(wid_1, 0.001)')
```

In fact, almost any valid Python expression is allowed. A notable example is that Python’s 1-line if expression is supported:

```python
pars.add('param_a', value=1)
pars.add('param_b', value=2)
pars.add('test_val', value=100)
pars.add('bounded', expr='param_a if test_val/2. > 100 else param_b')
```

which is equivalent to the more familiar:

```python
if pars['test_val'].value/2. > 100:
    bounded = pars['param_a'].value
else:
    bounded = pars['param_b'].value
```
11.3 Using Inequality Constraints

A rather common question about how to set up constraints that use an inequality, say, $x + y \leq 10$. This can be done with algebraic constraints by recasting the problem, as $x + y = \delta$ and $\delta \leq 10$. That is, first, allow x to be held by the freely varying parameter x. Next, define a parameter δ to be variable with a maximum value of 10, and define parameter y as $\delta - x$:

```python
pars = Parameters()
pars.add('x', value=5, vary=True)
pars.add('delta', value=5, max=10, vary=True)
pars.add('y', expr='delta-x')
```

The essential point is that an inequality still implies that a variable (here, δ) is needed to describe the constraint. The secondary point is that upper and lower bounds can be used as part of the inequality to make the definitions more convenient.

11.4 Advanced usage of Expressions in lmfit

The expression used in a constraint is converted to a Python Abstract Syntax Tree, which is an intermediate version of the expression – a syntax-checked, partially compiled expression. Among other things, this means that Python’s own parser is used to parse and convert the expression into something that can easily be evaluated within Python. It also means that the symbols in the expressions can point to any Python object.

In fact, the use of Python’s AST allows a nearly full version of Python to be supported, without using Python’s built-in `eval()` function. The `asteval` module actually supports most Python syntax, including for- and while-loops, conditional expressions, and user-defined functions. There are several unsupported Python constructs, most notably the class statement, so that new classes cannot be created, and the import statement, which helps make the `asteval` module safe from malicious use.

One important feature of the `asteval` module is that you can add domain-specific functions into the it, for later use in constraint expressions. To do this, you would use the `_asteval` attribute of the `Parameters` class, which contains a complete AST interpreter. The `asteval` interpreter uses a flat namespace, implemented as a single dictionary. That means you can preload any Python symbol into the namespace for the constraints, for example this Lorentzian function:

```python
def mylorentzian(x, amp, cen, wid):
    "lorentzian function: wid = half-width at half-max"
    return (amp / (1 + ((x-cen) / wid)**2))
```

You can add this user-defined function to the `asteval` interpreter of the `Parameters` class:

```python
from lmfit import Parameters
pars = Parameters()
pars._asteval.symtable['lorentzian'] = mylorentzian
```

and then initialize the `Minimizer` class with this parameter set:

```python
from lmfit import Minimizer

def userfcn(x, params):
    pass

fitter = Minimizer(userfcn, pars)
```
Alternatively, one can first initialize the `Minimizer` class and add the function to the `astevl` interpreter of `Minimizer.params` afterwards:

```python
pars = Parameters()
fitter = Minimizer(userfcn, pars)
fitter.params._asteval.symtable['lorentzian'] = mylorentzian
```

In both cases the user-defined `lorentzian()` function can now be used in constraint expressions.
This section discusses changes between versions, especially changes significant to the use and behavior of the library. This is not meant to be a comprehensive list of changes. For such a complete record, consult the lmfit GitHub repository.

12.1 Version 1.0.2 Release Notes

Version 1.0.2 officially supports Python 3.9 and has dropped support for Python 3.5. The minimum version of the following dependencies were updated: asteval>=0.9.21, numpy>=1.18, and scipy>=1.3.

New features:
- added two-dimensional Gaussian lineshape and model (PR #642; @mpmdean)
- all built-in models are now registered in `lmfit.models.lmfit_models`; new Model class attribute `valid_forms` (PR #663; @rayosborn)
- added a SineModel (PR #676; @lneuhaus)
- add the `run_mcmc_kwargs` argument to `Minimizer.emcee` to pass to the `emcee.EnsembleSampler.run_mcmc` function (PR #694; @rbvwrw)

Bug fixes:
- `ModelResult.eval_uncertainty` should use provided Parameters (PR #646)
- center in lognormal model can be negative (Issue #644, PR #645; @YoshieraHuang)
- restore best-fit values after calculation of covariance matrix (Issue #655, PR #657)
- add helper-function `not_zero` to prevent `ZeroDivisionError` in lineshapes and use in exponential lineshape (Issue #631, PR #664; @s-weigand)
- save `last_internal_values` and use to restore internal values if fit is aborted (PR #667)
- dumping a fit using the `lbfgsb` method now works, convert bytes to string if needed (Issue #677, PR #678; @leonfoks)
- fix use of callable Jacobian for scalar methods (PR #681; @mstimberg)
- preserve float/int types when encoding for JSON (PR #696; @jedzill4)
- better support for saving/loading of `ExpressionModels` and assure that `init_params` and `init_fit` are set when loading a `ModelResult` (PR #706)

Various:
- update minimum dependencies (PRs #688, #693)
• improvements in coding style, docstrings, CI, and test coverage (PRs #647, #649, #650, #653, #654; #685, #668, #689)
• fix typo in Oscillator (PR #658; @flothesof)
• add example using SymPy (PR #662)
• allow better custom pool for emcee() (Issue #666, PR #667)
• update NIST Strd reference functions and tests (PR #670)
• make building of documentation cross-platform (PR #673; @s-weigand)
• relax module name check in test_check_ast_errors for Python 3.9 (Issue #674, PR #675; @mwhudson)
• fix/update layout of documentation, now uses the sphinx13 theme (PR #687)
• fixed DeprecationWarnings reported by NumPy v1.2.0 (PR #699)
• increase value of tiny and check for it in bounded parameters to avoid “parameter not moving from initial value” (Issue #700, PR #701)
• add max_nfev to basinhopping and brute (now supported everywhere in lmfit) and set to more uniform default values (PR #701)
• use Azure Pipelines for CI, drop Travis (PRs #696 and #702)

12.2 Version 1.0.1 Release Notes

Version 1.0.1 is the last release that supports Python 3.5. All newer version will require 3.6+ so that we can use formatting-strings and rely on dictionaries being ordered.

New features:
• added thermal distribution model and lineshape (PR #620; @mpmdean)
• introduced a new argument max_nfev to uniformly specify the maximum number of function evaluations (PR #610) Please note: all other arguments (e.g., `maxfev`, `maxiter`, ...) will no longer be passed to the underlying solver. A warning will be emitted stating that one should use `max_nfev`.
• the attribute call_kws was added to the MinimizerResult class and contains the keyword arguments that are supplied to the solver in SciPy.

Bug fixes:
• fixes to the load and __setstate__ methods of the Parameter class
• fixed failure of ModelResult.dump() due to missing attributes (Issue #611, PR #623; @mpmdean)
• guess_from_peak function now also works correctly with decreasing x-values or when using pandas (PRs #627 and #629; @mpmdean)
• the Parameter.set() method now correctly first updates the boundaries and then the value (Issue #636, PR #637; @arunpersaud)

Various:
• fixed typo for the use of expressions in the documentation (Issue #610; @jkrogager)
• removal of PY2-compatibility and unused code and improved test coverage (PRs #619, #631, and #633)
• removed deprecated isParameter function and automatic conversion of an uncertainties object (PR #626)
• inaccurate FWHM calculations were removed from built-in models, others labeled as estimates (Issue #616 and PR #630)
• corrected spelling mistake for the Doniach lineshape and model (Issue #634; @rayosborn)
• removed unsupported/untested code for IPython notebooks in lmfit/ui/*

12.3 Version 1.0.0 Release Notes

Version 1.0.0 supports Python 3.5, 3.6, 3.7, and 3.8

New features:
• no new features are introduced in 1.0.0.

Improvements:
• support for Python 2 and use of the six package are removed. (PR #612)

Various:
• documentation updates to clarify the use of emcee. (PR #614)

12.4 Version 0.9.15 Release Notes

Version 0.9.15 is the last release that supports Python 2.7; it now also fully supports Python 3.8.

New features, improvements, and bug fixes:
• move application of parameter bounds to setter instead of getter (PR #587)
• add support for non-array Jacobian types in least_squares (Issue #588, @ezwelty in PR #589)
• add more information (i.e., acor and acceptance_fraction) about emcee fit (@j-zimmermann in PR #593)
• “name” is now a required positional argument for Parameter class, update the magic methods (PR #595)
• fix nvars count and bound handling in confidence interval calculations (Issue #597, PR #598)
• support Python 3.8; requires asteval >= 0.9.16 (PR #599)
• only support emcee version 3 (i.e., no PTSampler anymore) (PR #600)
• fix and refactor prob_bunc in confidence interval calculations (PR #604)
• fix adding Parameters with custom user-defined symbols (Issue #607, PR #608; thanks to @gbouvignies for the report)

Various:
• bump requirements to LTS version of SciPy/NumPy and code clean-up (PR #591)
• documentation updates (PR #596, and others)
• improve test coverage and Travis CI updates (PR #595, and others)
• update pre-commit hooks and configuration in setup.cfg

To-be deprecated: function Parameter.isParameter and conversion from uncertainties.core.Variable to value in _getval (PR #595)
12.5 Version 0.9.14 Release Notes

New features:

- the global optimizers `shgo` and `dual_annealing` (new in SciPy v1.2) are now supported (Issue #527; PRs #545 and #556)
- `eval` method added to the Parameter class (PR #550 by @zobristnicholas)
- avoid ZeroDivisionError in `printfuncs.params_html_table` (PR #552 by @aaristov and PR #559)
- add parallelization to `brute` method (PR #564, requires SciPy v1.3)

Bug fixes:

- consider only varying parameters when reporting potential issues with calculating errorbars (PR #549) and compare value to both min and max (PR #571)
- guard against division by zero in lineshape functions and FWHM and height expression calculations (PR #545)
- fix issues with restoring a saved Model (Issue #553; PR #554)
- always set `result.method` for emcee algorithm (PR #558)
- more careful adding of parameters to handle out-of-order constraint expressions (Issue #560; PR #561)
- make sure all parameters in Model.guess() use prefixes (PRs #567 and #569)
- use `inspect.signature` for PY3 to support wrapped functions (Issue #570; PR #576)
- fix `result.nfev` for `brute` method when using parallelization (Issue #578; PR #579)

Various:

- remove “missing” in the Model class (replaced by `nan_policy`) and “drop” as option to `nan_policy` (replaced by omit) deprecated since 0.9 (PR #565).
- deprecate ‘report_errors’ in `printfuncs.py` (PR #571)
- updates to the documentation to use `jupyter-sphinx` to include examples/output (PRs #573 and #575)
- include a Gallery with examples in the documentation using `sphinx-gallery` (PR #574 and #583)
- improve test-coverage (PRs #571, #572 and #585)
- add/clarify warning messages when NaN values are detected (PR #586)
- several updates to docstrings (Issue #584; PR #583, and others)
- update pre-commit hooks and several docstrings

12.6 Version 0.9.13 Release Notes

New features:

- Clearer warning message in fit reports when uncertainties should but cannot be estimated, including guesses of which Parameters to examine (#521, #543)
- SplitLorenztianModel and split_lorentzian function (#523)
- HTML representations for Parameter, MinimizerResult, and Model so that they can be printed better with Jupyter (#524, #548)
- support parallelization for differential evolution (#526)
Bug fixes:

- delay import of matplotlib (and so, the selection of its backend) as late as possible (#528, #529)
- fix for saving, loading, and reloading ModelResults (#534)
- fix to leastsq to report the best-fit values, not the values tried last (#535, #536)
- fix synchronization of all parameter values on Model.guess() (#539, #542)
- improve deprecation warnings for outdated nan_policy keywords (#540)
- fix for edge case in gformat() (#547)

Project management:

- using pre-commit framework to improve and enforce coding style (#533)
- added code coverage report to github main page
- updated docs, github templates, added several tests.
- dropped support and testing for Python 3.4.

12.7 Version 0.9.12 Release Notes

Lmfit package is now licensed under BSD-3.

New features:

- SkewedVoigtModel was added as built-in model (Issue #493)
- Parameter uncertainties and correlations are reported for least_squares
- Plotting of complex-valued models is now handled in ModelResult class (PR #503)
- A model’s independent variable is allowed to be an object (Issue #492)
- Added usersyms to Parameters() initialization to make it easier to add custom functions and symbols (Issue #507)
- the numdifftools package can be used to calculate parameter uncertainties and correlations for all solvers that do not natively support this (PR #506)
- emcee can now be used as method keyword-argument to Minimizer.minimize and minimize function, which allows for using emcee in the Model class (PR #512; see examples/example_emcee_with_Model.py)

(Bug)fixes:

- asteval errors are now flushed after raising (Issue #486)
- max_time and evaluation time for ExpressionModel increased to 1 hour (Issue #489)
- loading a saved ModelResult now restores all attributes (Issue #491)
- development versions of scipy and emcee are now supported (Issue #497 and PR #496)
- ModelResult.eval() do no longer overwrite the userkws dictionary (Issue #499)
- running the test suite requires pytest only (Issue #504)
- improved FWHM calculation for VoigtModel (PR #514)

12.7. Version 0.9.12 Release Notes
12.8 Version 0.9.10 Release Notes

Two new global algorithms were added: basinhopping and AMPGO. Basinhopping wraps the method present in scipy, and more information can be found in the documentation (basinhopping() and scipy.optimize.basinhopping). The Adaptive Memory Programming for Global Optimization (AMPGO) algorithm was adapted from Python code written by Andrea Gavana. A more detailed explanation of the algorithm is available in the AMPGO paper and specifics for lmfit can be found in the ampgo() function.

Lmfit uses the external uncertainties (https://github.com/lebigot/uncertainties) package (available on PyPI), instead of distributing its own fork.

An AbortFitException is now raised when the fit is aborted by the user (i.e., by using iter_cb).

Bugfixes:
- all exceptions are allowed when trying to import matplotlib
- simplify and fix corner-case errors when testing closeness of large integers

12.9 Version 0.9.9 Release Notes

Lmfit now uses the asteval (https://github.com/newville/asteval) package instead of distributing its own copy. The minimum required asteval version is 0.9.12, which is available on PyPI. If you see import errors related to asteval, please make sure that you actually have the latest version installed.

12.10 Version 0.9.6 Release Notes

Support for SciPy 0.14 has been dropped: SciPy 0.15 is now required. This is especially important for Lmfit maintenance, as it means we can now rely on SciPy having code for differential evolution and do not need to keep a local copy.

A brute force method was added, which can be used either with Minimizer.brute() or using the method='brute' option to Minimizer.minimize(). This method requires finite bounds on all varying parameters, or that parameters have a finite brute_step attribute set to specify the step size.

Custom cost functions can now be used for the scalar minimizers using the reduce_fcn option.

Many improvements to documentation and docstrings in the code were made. As part of that effort, all API documentation in this main Sphinx documentation now derives from the docstrings.

Uncertainties in the resulting best-fit for a model can now be calculated from the uncertainties in the model parameters.

Parameters have two new attributes: brute_step, to specify the step size when using the brute method, and user_data, which is unused but can be used to hold additional information the user may desire. This will be preserved on copy and pickling.

Several bug fixes and cleanups.

Versioneer was updated to 0.18.

Tests can now be run either with nose or pytest.
12.11 Version 0.9.5 Release Notes

Support for Python 2.6 and SciPy 0.13 has been dropped.

12.12 Version 0.9.4 Release Notes

Some support for the new `least_squares` routine from SciPy 0.17 has been added.

Parameters can now be used directly in floating point or array expressions, so that the Parameter value does not need `sigma = params['sigma'].value`. The older, explicit usage still works, but the docs, samples, and tests have been updated to use the simpler usage.

Support for Python 2.6 and SciPy 0.13 is now explicitly deprecated and will be dropped in version 0.9.5.

12.13 Version 0.9.3 Release Notes

Models involving complex numbers have been improved.

The `emcee` module can now be used for uncertainty estimation.

Many bug fixes, and an important fix for performance slowdown on getting parameter values.

ASV benchmarking code added.

12.14 Version 0.9.0 Release Notes

This upgrade makes an important, non-backward-compatible change to the way many fitting scripts and programs will work. Scripts that work with version 0.8.3 will not work with version 0.9.0 and vice versa. The change was not made lightly or without ample discussion, and is really an improvement. Modifying scripts that did work with 0.8.3 to work with 0.9.0 is easy, but needs to be done.

12.14.1 Summary

The upgrade from 0.8.3 to 0.9.0 introduced the `MinimizerResult` class (see `MinimizerResult – the optimization result`) which is now used to hold the return value from `minimize()` and `Minimizer.minimize()`. This returned object contains many goodness of fit statistics, and holds the optimized parameters from the fit. Importantly, the parameters passed into `minimize()` and `Minimizer.minimize()` are no longer modified by the fit. Instead, a copy of the passed-in parameters is made which is changed and returns as the `params` attribute of the returned `MinimizerResult`.
12.14.2 Impact

This upgrade means that a script that does:

```python
my_pars = Parameters()
my_pars.add('amp', value=300.0, min=0)
my_pars.add('center', value=5.0, min=0, max=10)
my_pars.add('decay', value=1.0, vary=False)
result = minimize(objfunc, my_pars)
```

will still work, but that `my_pars` will **NOT** be changed by the fit. Instead, `my_pars` is copied to an internal set of parameters that is changed in the fit, and this copy is then put in `result.params`. To look at fit results, use `result.params`, not `my_pars`.

This has the effect that `my_pars` will still hold the starting parameter values, while all of the results from the fit are held in the `result` object returned by `minimize()`.

If you want to do an initial fit, then refine that fit to, for example, do a pre-fit, then refine that result different fitting method, such as:

```python
result1 = minimize(objfunc, my_pars, method='nelder')
result1.params['decay'].vary = True
result2 = minimize(objfunc, result1.params, method='leastsq')
```

and have access to all of the starting parameters `my_pars`, the result of the first fit `result1`, and the result of the final fit `result2`.

12.14.3 Discussion

The main goal for making this change were to

1. **give a better return value** to `minimize()` and `Minimizer.minimize()` that can hold all of the information about a fit. By having the return value be an instance of the `MinimizerResult` class, it can hold an arbitrary amount of information that is easily accessed by attribute name, and even be given methods. Using objects is good!

2. **To limit or even eliminate the amount of “state information” a Minimizer holds.** By state information, we mean how much of the previous fit is remembered after a fit is done. Keeping (and especially using) such information about a previous fit means that a Minimizer might give different results even for the same problem if run a second time. While it’s desirable to be able to adjust a set of Parameters re-run a fit to get an improved result, doing this by changing an internal attribute (`Minimizer.params`) has the undesirable side-effect of not being able to “go back”, and makes it somewhat cumbersome to keep track of changes made while adjusting parameters and re-running fits.
EXAMPLES GALLERY

Below are examples of the different things you can do with lmfit. Click on any image to see the complete source code and output.

We encourage users (i.e., YOU) to submit user-guide-style, documented, and preferably self-contained examples of how you use lmfit for inclusion in this gallery! Please note that many of the examples below currently do not follow these guidelines yet.

13.1 Fit with Data in a pandas DataFrame

Simple example demonstrating how to read in the data using pandas and supply the elements of the DataFrame from lmfit.

```python
import matplotlib.pyplot as plt
import pandas as pd
from lmfit.models import LorentzianModel

dframe = pd.read_csv('peak.csv')
model = LorentzianModel()
params = model.guess(dframe['y'], x=dframe['x'])
result = model.fit(dframe['y'], params, x=dframe['x'])
result.plot_fit()
plt.show()
print(result.fit_report())
```
Out:

```

[[Model]]
  Model(lorentzian)
[[Fit Statistics]]
  # fitting method = leastsq
  # function evals = 21
  # data points = 101
  # variables = 3
  chi-square = 13.0737250
  reduced chi-square = 0.13340536
  Akaike info crit = -200.496119
  Bayesian info crit = -192.650757
[[Variables]]
  amplitude: 39.1530829 +/- 0.62389698 (1.59%) (init = 50.7825)
  center: 9.22379520 +/- 0.01835869 (0.20%) (init = 9.3)
  sigma: 1.15503893 +/- 0.02603688 (2.25%) (init = 1.3)
  fwhm: 2.31007785 +/- 0.05207377 (2.25%) == '2.0000000 * sigma'
  height: 10.7899514 +/- 0.17160472 (1.59%) == '0.3183099 * amplitude/max(1e-15, -sigma)'
[[Correlations]] (unreported correlations are < 0.100)
  C(amplitude, sigma) = 0.709
```

Total running time of the script: (0 minutes 0.385 seconds)
13.2 Using an ExpressionModel

ExpressionModels allow a model to be built from a user-supplied expression. See: https://lmfit.github.io/lmfit-py/builtin_models.html#user-defined-models

```python
import matplotlib.pyplot as plt
import numpy as np
from lmfit.models import ExpressionModel

gmod = ExpressionModel("amp * exp(-(x-cen)**2 / (2*wid**2))/(sqrt(2*pi)*wid)"
result = gmod.fit(y, x=x, amp=5, cen=5, wid=1)

define the ExpressionModel and perform the fit:
```

```
x = np.linspace(-10, 10, 201)
amp, cen, wid = 3.4, 1.8, 0.5

amp * np.exp(-(x-cen)**2 / (2*wid**2)) / (np.sqrt(2*np.pi)*wid)
```

```
y = y + np.random.normal(size=x.size, scale=0.01)
```

Generate synthetic data for the user-supplied model:

Define the ExpressionModel and perform the fit:

```
print(result.fit_report())
plt.plot(x, y, 'bo')
plt.plot(x, result.init_fit, 'k--', label='initial fit')
plt.plot(x, result.best_fit, 'r-', label='best fit')
plt.legend(loc='best')
plt.show()
```
Out:

```
[[Model]]
   Model(_eval)
[[Fit Statistics]]
   # fitting method = leastsq
   # function evals = 56
   # data points = 201
   # variables = 3
   chi-square = 0.01825874
   reduced chi-square = 9.2216e-05
   Akaike info crit = -1864.58964
   Bayesian info crit = -1854.67973

[[Variables]]
   amp:  3.40013669 +/- 0.00494962 (0.15%) (init = 5)
   cen:  1.80087014 +/- 8.3982e-04 (0.05%) (init = 5)
   wid:  0.49962144 +/- 8.3982e-04 (0.17%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
   C(amp, wid) = 0.577
```

Total running time of the script: (0 minutes 0.283 seconds)
13.3 Fit Using Inequality Constraint

Sometimes specifying boundaries using \texttt{min} and \texttt{max} are not sufficient, and more complicated (inequality) constraints are needed. In the example below the center of the Lorentzian peak is constrained to be between 0-5 away from the center of the Gaussian peak.

See also: https://lmfit.github.io/lmfit-py/constraints.html#using-inequality-constraints

```python
import matplotlib.pyplot as plt
import numpy as np
from lmfit import Minimizer, Parameters, report_fit
from lmfit.lineshapes import gaussian, lorentzian

def residual(pars, x, data):
    model = (gaussian(x, pars['amp_g'], pars['cen_g'], pars['wid_g']) +
             lorentzian(x, pars['amp_l'], pars['cen_l'], pars['wid_l']))
    return model - data

Generate the simulated data using a Gaussian and Lorentzian line shape:

```python
np.random.seed(0)
x = np.linspace(0, 20.0, 601)
data = (gaussian(x, 21, 6.1, 1.2) + lorentzian(x, 10, 9.6, 1.3) +
 np.random.normal(scale=0.1, size=x.size))
```

Create the fitting parameters and set an inequality constraint for \texttt{cen_l}. First, we add a new fitting parameter \texttt{peak_split}, which can take values between 0 and 5. Afterwards, we constrain the value for \texttt{cen_l} using the expression to be \texttt{peak_split+cen_g}:

```python
pfit = Parameters()
pfit.add(name='amp_g', value=10)
pfit.add(name='amp_l', value=10)
pfit.add(name='cen_g', value=5)
pfit.add(name='peak_split', value=2.5, min=0, max=5, vary=True)
pfit.add(name='cen_l', expr='peak_split+cen_g')
pfit.add(name='wid_g', value=1)
pfit.add(name='wid_l', expr='wid_g')

mini = Minimizer(residual, pfit, fcn_args=(x, data))
out = mini.leastsq()
best_fit = data + out.residual
```

Performing a fit, here using the \texttt{leastsq} algorithm, gives the following fitting results:

```python
report_fit(out.params)
```

Out:

```python
[[Variables]]
 amp_g: 21.2722837 +/- 0.05138760 (0.24%) (init = 10)
 amp_l: 9.46504191 +/- 0.05445416 (0.58%) (init = 10)
 cen_g: 6.10496394 +/- 0.00334614 (0.05%) (init = 5)
 peak_split: 3.52163535 +/- 0.01004618 (0.29%) (init = 2.5)
 cen_l: 9.62659929 +/- 0.01066173 (0.11%) == 'peak_split+cen_g'
```

(continues on next page)
wid_g: 1.21434950 +/- 0.00327315 (0.27%) (init = 1)
wid_l: 1.21434950 +/- 0.00327315 (0.27%) == 'wid_g'

[[Correlations]] (unreported correlations are < 0.100)
C(amp_g, wid_g) = 0.620
C(amp_g, peak_split) = 0.380
C(peak_split, wid_g) = 0.344
C(amp_g, amp_l) = -0.295
C(amp_l, cen_g) = -0.276
C(amp_g, cen_g) = 0.194
C(amp_l, wid_g) = -0.165
C(cen_g, wid_g) = 0.155

and figure:

```python
plt.plot(x, data, 'bo')
plt.plot(x, best_fit, 'r--', label='best fit')
plt.legend(loc='best')
plt.show()
```

Total running time of the script: ( 0 minutes 0.303 seconds)
13.4 Fit Using differential_evolution Algorithm

This example compares the “leastsq” and “differential_evolution” algorithms on a fairly simple problem.

```
Fit using leastsq:
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 65
 # data points = 101
 # variables = 4
 chi-square = 21.7961792
 reduced chi-square = 0.22470288
 Akaike info crit = -146.871969
 Bayesian info crit = -136.411487
[[Variables]]
 offset: 0.96333090 +/- 0.04735921 (4.92%) (init = 2)
 omega: 3.98700821 +/- 0.02079710 (0.52%) (init = 3.3)
 amp: 1.80253577 +/- 0.19401989 (10.76%) (init = 2.5)
 decay: 5.76279825 +/- 1.04073303 (18.06%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
 C(amp, decay) = -0.755
```

(continues on next page)
# Fit using differential_evolution:

[[Fit Statistics]]

- fitting method: differential_evolution
- function evals: 1425
- data points: 101
- variables: 4
- chi-square: 21.7961792
- reduced chi-square: 0.22470288
- Akaike info crit: -146.871969
- Bayesian info crit: -136.411487

[[Variables]]

- offset: 0.96333133 +/- 0.04735903 (4.92%) (init = 2)
- omega: 3.98700854 +/- 0.02121810 (0.53%) (init = 3.3)
- amp: 1.80252618 +/- 0.19022408 (10.55%) (init = 2.5)
- decay: 5.76284502 +/- 1.00452606 (17.43%) (init = 1)

[[Correlations]] (unreported correlations are < 0.100)

C(amp, decay) = -0.743

```python
import matplotlib.pyplot as plt
import numpy as np
import lmfit

np.random.seed(2)
x = np.linspace(0, 10, 101)

Setup example
decay = 5
offset = 1.0
amp = 2.0
omega = 4.0

y = offset + amp*np.sin(omega*x) * np.exp(-x/decay)
yn = y + np.random.normal(size=y.size, scale=0.450)

def resid(params, x, ydata):
 decay = params['decay'].value
 offset = params['offset'].value
 omega = params['omega'].value
 amp = params['amp'].value

 y_model = offset + amp * np.sin(x*omega) * np.exp(-x/decay)
 return y_model - ydata

params = lmfit.Parameters()
params.add('offset', 2.0, min=0, max=10.0)
params.add('omega', 3.3, min=0, max=10.0)
params.add('amp', 2.5, min=0, max=10.0)
params.add('decay', 1.0, min=0, max=10.0)
```

(continues on next page)
o1 = lmfit.minimize(resid, params, args=(x, yn), method='leastsq')
print("# Fit using leastsq:")
lmfit.report_fit(o1)

o2 = lmfit.minimize(resid, params, args=(x, yn), method='differential_evolution')
print("# Fit using differential_evolution:")
lmfit.report_fit(o2)

plt.plot(x, yn, 'ko', lw=2)
plt.plot(x, yn+o1.residual, 'r-', lw=2)
plt.plot(x, yn+o2.residual, 'b--', lw=2)
plt.legend(['data', 'leastsq', 'diffev'], loc='upper left')
plt.show()

Total running time of the script: 0 minutes 0.878 seconds

13.5 Fit Using Bounds

A major advantage of using lmfit is that one can specify boundaries on fitting parameters, even if the underlying algorithm in SciPy does not support this. For more information on how this is implemented, please refer to: https://lmfit.github.io/lmfit-py/bounds.html

The example below shows how to set boundaries using the min and max attributes to fitting parameters.

```python
import matplotlib.pyplot as plt
from numpy import exp, linspace, pi, random, sign, sin
from lmfit import Parameters, minimize
from lmfit.printfuncs import report_fit

p_true = Parameters()
p_true.add('amp', value=14.0)
p_true.add('period', value=5.4321)
p_true.add('shift', value=0.12345)
p_true.add('decay', value=0.01000)

def residual(pars, x, data=None):
 argu = (x * pars['decay'])**2
 shift = pars['shift']
 if abs(shift) > pi/2:
 shift = shift - sign(shift) * pi
 model = pars['amp'] * sin(shift + x/pars['period']) * exp(-argu)
 if data is None:
 return model
 return model - data

random.seed(0)
x = linspace(0, 250, 1500)
noise = random.normal(scale=2.80, size=x.size)
data = residual(p_true, x) + noise
fit_params = Parameters()
```

(continues on next page)
```python
fit_params.add('amp', value=13.0, max=20, min=0.0)
fit_params.add('period', value=2, max=10)
fit_params.add('shift', value=0.0, max=pi/2., min=-pi/2.)
fit_params.add('decay', value=0.02, max=0.10, min=0.00)

out = minimize(residual, fit_params, args=(x,), kws={'data': data})

fit = residual(out.params, x)
```

This gives the following fitting results:

```python
report_fit(out, show_correl=True, modelpars=p_true)
```

Out:

```python
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 74
 # data points = 1500
 # variables = 4
 chi-square = 11301.3646
 reduced chi-square = 7.55438813
 Akaike info crit = 3037.18756
 Bayesian info crit = 3058.44044

[[Variables]]
 amp: 13.8903938 +/- 0.24412383 (1.76%) (init = 13), model_value = 14
 period: 5.44026442 +/- 0.01416175 (0.26%) (init = 2), model_value = 5.4321
 shift: 0.12464470 +/- 0.02414209 (19.37%) (init = 0), model_value = 0.12345
 decay: 0.00996351 +/- 2.0278e-04 (2.04%) (init = 0.02), model_value = 0.01

[[Correlations]] (unreported correlations are < 0.100)
 C(period, shift) = 0.800
 C(amp, decay) = 0.576
```

and shows the plot below:

```python
plt.plot(x, data, 'ro')
plt.plot(x, fit, 'b')
plt.show()
```
13.6 Fit Specifying Different Reduce Function

The reduce_fcn specifies how to convert a residual array to a scalar value for the scalar minimizers. The default value is None (i.e., “sum of squares of residual”) - alternatives are: ‘negentropy’ and ‘neglogcauchy’ or a user-specified “callable”. For more information please refer to: https://lmfit.github.io/lmfit-py/fitting.html#using-the-minimizer-class

Here, we use as an example the Student’s t log-likelihood for robust fitting of data with outliers.
# Fit using sum of squares:

[[Fit Statistics]]

- fitting method = L-BFGS-B
- function evals = 130
- data points = 101
- variables = 4
- chi-square = 32.1674767
- reduced chi-square = 0.33162347
- Akaike info crit = -107.560626
- Bayesian info crit = -97.1001440

[[Variables]]

- offset: 1.10392445 +/- 0.05751441 (5.21%) (init = 2)
- omega: 3.97313428 +/- 0.02073920 (0.52%) (init = 3.3)
- amp: 1.69977036 +/- 0.21587450 (12.70%) (init = 2.5)
- decay: 7.65901704 +/- 1.87208973 (24.44%) (init = 1)

[[Correlations]] (unreported correlations are < 0.100)

C(amp, decay) = -0.773

# Robust Fit, using log-likelihood with Cauchy PDF:

[[Fit Statistics]]

- fitting method = L-BFGS-B

(continues on next page)
import matplotlib.pyplot as plt
import numpy as np

import lmfit

np.random.seed(2)
x = np.linspace(0, 10, 101)

# Setup example
decay = 5
offset = 1.0
amp = 2.0
omega = 4.0

cy = offset + amp * np.sin(omega * x) + np.exp(-x / decay)
y = cy + np.random.normal(size=y.size, scale=0.250)
outliers = np.random.randint(int(len(x)/3.0), len(x), int(len(x)/12))
y[outliers] += 5 * np.random.random(len(outliers))

def resid(params, x, ydata):
    decay = params['decay'].value
    offset = params['offset'].value
    omega = params['omega'].value
    amp = params['amp'].value

    y_model = offset + amp * np.sin(omega * x) + np.exp(-x / decay)
    return y_model - ydata

params = lmfit.Parameters()
params.add('offset', 2.0)
params.add('omega', 3.3)
Non-Linear Least-Squares Minimization and Curve-Fitting for Python, Release 1.0.2

```python
params.add('amp', 2.5)
params.add('decay', 1.0, min=0)

method = 'L-BFGS-B'

o1 = lmfit.minimize(resid, params, args=(x, yn), method=method)
print("# Fit using sum of squares:

")

lmfit.report_fit(o1)

o2 = lmfit.minimize(resid, params, args=(x, yn), method=method,
reduce_fcn='neglogcauchy')

print("\n\n# Robust Fit, using log-likelihood with Cauchy PDF:
")

lmfit.report_fit(o2)

plt.plot(x, y, 'ko', lw=2)
plt.plot(x, yn, 'k--*', lw=1)
plt.plot(x, yn+o1.residual, 'r-', lw=2)
plt.plot(x, yn+o2.residual, 'b-', lw=2)
plt.legend(['True function',
 'with noise+outliers',
 'sum of squares fit',
 'robust fit'], loc='upper left')
plt.show()
```

**Total running time of the script:** ( 0 minutes 0.478 seconds)

### 13.7 Building a lmfit model with SymPy

SymPy is a Python library for symbolic mathematics. It can be very useful to build a model with SymPy and then apply that model to the data with lmfit. This example shows how to do that. Please note that this example requires both the sympy and matplotlib packages.

```python
import matplotlib.pyplot as plt
import numpy as np
import sympy
from sympy.parsing import sympy_parser
import lmfit

np.random.seed(1)

Instead of creating the SymPy symbols explicitly and building an expression with them, we will use the SymPy parser.

```python
gauss_peak1 = sympy_parser.parse_expr('A1*exp(-(x-xc1)**2/(2*sigma1**2))')
gauss_peak2 = sympy_parser.parse_expr('A2*exp(-(x-xc2)**2/(2*sigma2**2))')
exp_back = sympy_parser.parse_expr('B*exp(-x/xw)')

model_list = sympy.Array((gauss_peak1, gauss_peak2, exp_back))
model = sum(model_list)

print(model)
```

Out:

```
A1*exp(-(x - xc1)**2/(2*sigma1**2)) + A2*exp(-(x - xc2)**2/(2*sigma2**2)) + B*exp(-x/xw)
```
We are using SymPy’s lambdify function to make a function from the model expressions. We then use these functions to generate some fake data.

```python
model_list_func = sympy.lambdify(list(model_list.free_symbols), model_list)
model_func = sympy.lambdify(list(model.free_symbols), model)

x = np.linspace(0, 10, 40)
param_values = dict(x=x, A1=2, sigma1=1, sigma2=1, A2=3,
                    xc1=2, xc2=5, xw=4, B=5)
y = model_func(**param_values)
yi = model_list_func(**param_values)
yn = y + np.random.randn(y.size)*0.4

plt.plot(x, yn, 'o', zorder=1.9, ms=3)
plt.plot(x, y, lw=3)
for c in yi:
    plt.plot(x, c, lw=1, c='0.7')
```

Next, we will just create a lmfit model from the function and fit the data.

```python
lm_mod = lmfit.Model(model_func, independent_vars=('x'))
res = lm_mod.fit(data=yn, **param_values)
res.plot_fit()
plt.plot(x, y, label='true')
plt.legend()
plt.show()
```
The nice thing of using SymPy is that we can easily modify our fit function. Let’s assume we know that the width of both Gaussians are identical. Similarly, we assume that the ratio between both Gaussians is fixed to 3:2 for some reason. Both can be expressed by just substituting the variables.

```python
model2 = model.subs('sigma2', 'sigma1').subs('A2', '3/2*A1')
model2_func = sympy.lambdify(list(model2.free_symbols), model2)
lm_mod = lmfit.Model(model2_func, independent_vars=('x'))
param2_values = dict(x=x, A1=2, sigma1=1, xc1=2, xc2=5, xw=4, B=5)
res2 = lm_mod.fit(data=yn, **param2_values)
res2.plot_fit()
plt.plot(x, y, label='true')
plt.legend()
plt.show()
```
Total running time of the script: (0 minutes 1.919 seconds)
13.8 Fit with Algebraic Constraint

Out:

```
[[Fit Statistics]]
# fitting method = leastsq
# function evals  = 53
# data points    = 601
# variables      = 6
chi-square     = 71878.3055
reduced chi-square = 120.803875
Akaike info crit = 2887.26503
Bayesian info crit = 2913.65660
[[Variables]]
amp_g:   21.1877704 +/- 0.32191824 (1.52%) (init = 10)
cen_g:  8.11125923 +/- 0.01162984 (0.14%) (init = 9)
wid_g:  1.20925846 +/- 0.01170853 (0.97%) (init = 1)
amp_tot: 30.6003738 +/- 0.36481391 (1.19%) (init = 20)
amp_l:  9.41260340 +/- 0.61672681 (6.55%) == 'amp_tot - amp_g'
cen_l:  9.61125923 +/- 0.01162984 (0.12%) == '1.5+cen_g'
wid_l:  2.41851692 +/- 0.02341706 (0.97%) == '2*wid_g'
line_slope: 0.49615727 +/- 0.00170178 (0.34%) (init = 0)
line_off: 0.04128591 +/- 0.02448064 (59.30%) (init = 0)
[[Correlations]] (unreported correlations are < 0.100)
  C(amp_g, wid_g)     = 0.866
```

(continues on next page)
C(amp_g, cen_g) = 0.750
C(line_slope, line_off) = -0.714
C(cen_g, amp_tot) = -0.695
C(cen_g, wid_g) = 0.623
C(amp_g, amp_tot) = -0.612
C(wid_g, amp_tot) = -0.412
C(cen_g, line_off) = 0.387
C(amp_g, line_off) = 0.183
C(amp_g, line_slope) = 0.183
C(wid_g, line_slope) = 0.174

import matplotlib.pyplot as plt
from numpy import linspace, random
from lmfit import Minimizer, Parameters
from lmfit.lineshapes import gaussian, lorentzian
from lmfit.printfuncs import report_fit

def residual(pars, x, sigma=None, data=None):
 yg = gaussian(x, pars['amp_g'], pars['cen_g'], pars['wid_g'])
 yl = lorentzian(x, pars['amp_l'], pars['cen_l'], pars['wid_l'])

 slope = pars['line_slope']
 offset = pars['line_off']
 model = yg + yl + offset + x*slope

 if data is None:
 return model
 if sigma is None:
 return model - data
 return (model - data) / sigma

random.seed(0)
x = linspace(0.0, 20.0, 601)
data = (gaussian(x, 21, 8.1, 1.2) +
 lorentzian(x, 10, 9.6, 2.4) +
 random.normal(scale=0.23, size=x.size) +
 x*0.5)
pfit = Parameters()
pfit.add(name='amp_g', value=10)
pfit.add(name='cen_g', value=9)
pfit.add(name='wid_g', value=1)
pfit.add(name='amp_tot', value=20)
pfit.add(name='amp_l', expr='amp_tot - amp_g')
pfit.add(name='cen_l', expr='1.5+cen_g')

(continues on next page)
pfit.add(name='wid_l', expr='2*wid_g')
pfit.add(name='line_slope', value=0.0)
pfit.add(name='line_off', value=0.0)

sigma = 0.021 # estimate of data error (for all data points)

myfit = Minimizer(residual, pfit,
 fcn_args=(x,), fcn_kws={'sigma': sigma, 'data': data},
 scale_covar=True)

result = myfit.leastsq()
init = residual(pfit, x)
fit = residual(result.params, x)

report_fit(result)

plt.plot(x, data, 'r+')
plt.plot(x, init, 'b--', label='initial fit')
plt.plot(x, fit, 'k-', label='best fit')
plt.legend(loc='best')
plt.show()

Total running time of the script: (0 minutes 0.327 seconds)

13.9 Fit Multiple Data Sets

Fitting multiple (simulated) Gaussian data sets simultaneously.

All minimizers require the residual array to be one-dimensional. Therefore, in the objective we need to `flatten` the array before returning it.

TODO: this should be using the Model interface / built-in models!

```python
import matplotlib.pyplot as plt
import numpy as np

from lmfit import Parameters, minimize, report_fit

def gauss(x, amp, cen, sigma):
    """Gaussian lineshape."
    return amp * np.exp(-(x-cen)**2 / (2.*sigma**2))

def gauss_dataset(params, i, x):
    """Calculate Gaussian lineshape from parameters for data set.""
    amp = params['amp_%i' % (i+1)]
    cen = params['cen_%i' % (i+1)]
    sig = params['sig_%i' % (i+1)]
    return gauss(x, amp, cen, sig)

def objective(params, x, data):
    """Calculate total residual for fits of Gaussians to several data sets.""
    ndata, _ = data.shape
    ```
Non-Linear Least-Squares Minimization and Curve-Fitting for Python, Release 1.0.2

resid = 0.0*data[:]

make residual per data set
for i in range(ndata):
 resid[i, :] = data[i, :] - gauss_dataset(params, i, x)

now flatten this to a 1D array, as minimize() needs
return resid.flatten()

Create five simulated Gaussian data sets

```python
x = np.linspace(-1, 2, 151)
data = []
for _ in np.arange(5):
    params = Parameters()
    amp = 0.60 + 9.50*np.random.rand()
    cen = -0.20 + 1.20*np.random.rand()
    sig = 0.25 + 0.03*np.random.rand()
    dat = gauss(x, amp, cen, sig) + np.random.normal(size=x.size, scale=0.1)
data.append(dat)
data = np.array(data)
```

Create five sets of fitting parameters, one per data set

```python
fit_params = Parameters()
for iy, y in enumerate(data):
    fit_params.add('amp_%i' % (iy+1), value=0.5, min=0.0, max=200)
    fit_params.add('cen_%i' % (iy+1), value=0.4, min=-2.0, max=2.0)
    fit_params.add('sig_%i' % (iy+1), value=0.3, min=0.01, max=3.0)

Constrain the values of sigma to be the same for all peaks by assigning sig_2, ..., sig_5 to be equal to sig_1.

```python
for iy in (2, 3, 4, 5):
 fit_params['sig_%i' % iy].expr = 'sig_1'
```

Run the global fit and show the fitting result

```python
out = minimize(objective, fit_params, args=(x, data))
report_fit(out.params)
```

Out:

```
[[Variables]]
 amp_1: 6.35769745 +/- 0.02471391 (0.39%) (init = 0.5)
 cen_1: -0.06087255 +/- 0.00141148 (2.32%) (init = 0.4)
 sig_1: 0.27096733 +/- 6.7335e-04 (0.25%) (init = 0.3)
 amp_2: 6.23505243 +/- 0.02466565 (0.40%) (init = 0.5)
 cen_2: 0.90331537 +/- 0.00143924 (0.16%) (init = 0.4)
 sig_2: 0.27096733 +/- 6.7335e-04 (0.25%) == 'sig_1'
 amp_3: 6.74510330 +/- 0.02487197 (0.37%) (init = 0.3)
 cen_3: 0.30698606 +/- 0.00133040 (0.43%) (init = 0.4)
 sig_3: 0.27096733 +/- 6.7335e-04 (0.25%) == 'sig_1'
 amp_4: 3.62962270 +/- 0.02384778 (0.66%) (init = 0.5)
 cen_4: 0.00271542 +/- 0.00247235 (91.05%) (init = 0.4)
 sig_4: 0.27096733 +/- 6.7335e-04 (0.25%) == 'sig_1'
 amp_5: 6.29975266 +/- 0.02469084 (0.39%) (init = 0.5)
```
cen_5: -0.15885172 +/- 0.00142452 (0.90%) (init = 0.4)
sig_5: 0.27096733 +/- 6.7335e-04 (0.25%) == 'sig_1'

[[Correlations]] (unreported correlations are < 0.100)
C(sig_1, amp_3) = -0.337
C(amp_1, sig_1) = -0.320
C(sig_1, amp_5) = -0.317
C(sig_1, amp_2) = -0.314
C(sig_1, amp_4) = -0.189
C(amp_1, amp_3) = 0.108
C(amp_3, amp_5) = 0.107
C(amp_2, amp_3) = 0.106
C(amp_1, amp_5) = 0.101
C(amp_1, amp_2) = 0.100

Plot the data sets and fits

```python
plt.figure()
for i in range(5):
 y_fit = gauss_dataset(out.params, i, x)
 plt.plot(x, data[i, :], 'o', x, y_fit, '-')
plt.show()
```

![Plot of data sets and fits](image)

**Total running time of the script:** (0 minutes 0.447 seconds)
13.10 Fit Specifying a Function to Compute the Jacobian

Specifying an analytical function to calculate the Jacobian can speed-up the fitting procedure.

```python
import matplotlib.pyplot as plt
import numpy as np

from lmfit import Minimizer, Parameters

def func(pars, x, data=None):
 a, b, c = pars['a'], pars['b'], pars['c']
 model = a * np.exp(-b*x) + c
 if data is None:
 return model
 return model - data

def dfunc(pars, x, data=None):
 a, b = pars['a'], pars['b']
 v = np.exp(-b*x)
 return np.array([v, -a*x*v, np.ones(len(x))])

def f(var, x):
 return var[0] * np.exp(-var[1]*x) + var[2]

params = Parameters()
params.add('a', value=10)
params.add('b', value=10)
params.add('c', value=10)

a, b, c = 2.5, 1.3, 0.8
x = np.linspace(0, 4, 50)
y = f([a, b, c], x)
data = y + 0.15*np.random.normal(size=x.size)

fit without analytic derivative
min1 = Minimizer(func, params, fcn_args=(x,), fcn_kws={'data': data})
out1 = min1.leastsq()
fit1 = func(out1.params, x)

fit with analytic derivative
min2 = Minimizer(func, params, fcn_args=(x,), fcn_kws={'data': data})
out2 = min2.leastsq(Dfun=dfunc, col_deriv=1)
fit2 = func(out2.params, x)

Comparison of fit to exponential decay with/without analytical derivatives to model = a*exp(-b*x) + c

print('"true" parameters are: a = %3f, b = %3f, c = %3f

<table>
<thead>
<tr>
<th>Statistic/Parameter</th>
<th>Without</th>
<th>With</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Function Calls</td>
<td>%3i</td>
<td>%3i</td>
</tr>
</tbody>
</table>
Chi-square | %.4f | %.4f |
 a | %.4f | %.4f |
 b | %.4f | %.4f |
 c | %.4f | %.4f |

'''
 % (a, b, c,
 out1.nfev, out2.nfev,
 out1.chisqr, out2.chisqr,
 out1.params['a'], out2.params['a'],
 out1.params['b'], out2.params['b'],
 out1.params['c'], out2.params['c']
)

Out:

"true" parameters are: a = 2.500, b = 1.300, c = 0.800

Statistic/Parameter| Without | With |
--------------------|---------|------|
N Function Calls | 44 | 14 |
Chi-square | 0.8974 | 0.8974 |
 a | 2.4327 | 2.4327 |
 b | 1.1946 | 1.1946 |
 c | 0.7669 | 0.7669 |

and the best-fit to the synthetic data (with added noise) is the same for both methods:

plt.plot(x, data, 'ro')
plt.plot(x, fit1, 'b')
plt.plot(x, fit2, 'k')
plt.show()
The Model class is a flexible, concise curve fitter. I will illustrate fitting example data to an exponential decay.

def decay(t, N, tau):
 return N*np.exp(-t/tau)

The parameters are in no particular order. We’ll need some example data. I will use N=7 and \(\tau = 3 \), and add a little noise.

t = np.linspace(0, 5, num=1000)
data = decay(t, 7, 3) + np.random.randn(t.size)
model = Model(decay, independent_vars=['t'])
result = model.fit(data, t=t, N=10, tau=1)

The Model infers the parameter names by inspecting the arguments of the function, decay. Then I passed the independent variable, t, and initial guesses for each parameter. A residual function is automatically defined, and a least-squared regression is performed.

We can immediately see the best-fit values:

print(result.values)

Out:

{'N': 6.984064047700289, 'tau': 3.0113542953210715}

and use these best-fit parameters for plotting with the plot function:

result.plot()
We can review the best-fit Parameters by accessing `result.params`:

```python
result.params.pretty_print()
```

Out:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Min</th>
<th>Max</th>
<th>Stderr</th>
<th>Vary</th>
<th>Expr</th>
<th>Brute_Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6.984</td>
<td>-inf</td>
<td>inf</td>
<td>0.08845</td>
<td>True</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>tau</td>
<td>3.011</td>
<td>-inf</td>
<td>inf</td>
<td>0.066</td>
<td>True</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

More information about the fit is stored in the result, which is an `lmfit.MinimizerResult` object (see: https://lmfit.github.io/lmfit-py/fitting.html#lmfit.minimizer.MinimizerResult)

13.11. Fit using the Model interface
Specifying Bounds and Holding Parameters Constant

Above, the Model class implicitly builds Parameter objects from keyword arguments of fit that match the arguments of decay. You can build the Parameter objects explicitly; the following is equivalent.

```python
cpy = model.fit(data, t=t,
    N=Parameter('N', value=10),
    tau=Parameter('tau', value=1))
report_fit(p)
```

Out:

```
[[Variables]]
    N: 6.98406405 +/- 0.08844670 (1.27%) (init = 10)
    tau: 3.01135430 +/- 0.06600023 (2.19%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
    C(N, tau) = -0.756
```

By building Parameter objects explicitly, you can specify bounds (min, max) and set parameters constant (vary=False).

```python
cpy = model.fit(data, t=t,
    N=Parameter('N', value=7, vary=False),
    tau=Parameter('tau', value=1, min=0))
report_fit(p)
```

Out:

```
[[Variables]]
    N: 7 (fixed)
    tau: 3.00247383 +/- 0.04292226 (1.43%) (init = 1)
```

Defining Parameters in Advance

Passing parameters to fit can become unwieldy. As an alternative, you can extract the parameters from model like so, set them individually, and pass them to fit.

```python
p = model.make_params()
p['N'].value = 10
p['tau'].value = 1
p['tau'].min = 0

result = model.fit(data, p, t=t)
report_fit(p)
```

Out:

```
[[Variables]]
    N: 6.98406394 +/- 0.08844674 (1.27%) (init = 10)
    tau: 3.01135441 +/- 0.06599962 (2.19%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
    C(N, tau) = -0.756
```

Keyword arguments override params, resetting value and all other properties (min, max, vary).

```python
result = model.fit(data, params, t=t, tau=1)
report_fit(p)
```
The input parameters are not modified by fit. They can be reused, retaining the same initial value. If you want to use the result of one fit as the initial guess for the next, simply pass `params=result.params`.

#TODO/FIXME: not sure if there ever way a “helpful exception”, but currently #it raises a ValueError: The input contains nan values.

#*A Helpful Exception*

#All this implicit magic makes it very easy for the user to neglect to set a #parameter. The fit function checks for this and raises a helpful exception.

```
# #result = model.fit(data, t=t, tau=1) # N unspecified

#An extra parameter that cannot be matched to the model function will #throw a UserWarning, but it will not raise, leaving open the possibility #of unforeseen extensions calling for some parameters.
```

Weighted Fits

Use the `sigma` argument to perform a weighted fit. If you prefer to think of the fit in term of weights, `sigma=1/weights`.

```
weights = np.arange(len(data))
result = model.fit(data, params, t=t, weights=weights)
report_fit(result.params)
```

Out:

```
[[Variables]]
   N:  7.33054986 +/- 0.26968212 (3.68%) (init = 10)
   tau: 2.84538079 +/- 0.09473421 (3.33%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
   C(N, tau) = -0.929
```

Handling Missing Data

By default, attempting to fit data that includes a NaN, which conventionally indicates a “missing” observation, raises a lengthy exception. You can choose to omit (i.e., skip over) missing values instead.

```
data_with_holes = data.copy()
data_with_holes[[5, 500, 700]] = np.nan  # Replace arbitrary values with NaN.
model = Model(decay, independent_vars=['t'], nan_policy='omit')
result = model.fit(data_with_holes, params, t=t)
report_fit(result.params)
```

Out:

```
[[Variables]]
   N:  6.99349787 +/- 0.08886695 (1.27%) (init = 10)
   tau: 3.00311360 +/- 0.06590577 (2.19%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
   C(N, tau) = -0.757
```
If you don’t want to ignore missing values, you can set the model to raise proactively, checking for missing values before attempting the fit.

Uncomment to see the error

```python
model = Model(decay, independent_vars=['t'], nan_policy='raise')
result = model.fit(data_with_holes, params, t=t)
```

The default setting is `nan_policy='raise'`, which does check for NaNs and raises an exception when present.

Null-checking relies on `pandas.isnull` if it is available. If pandas cannot be imported, it silently falls back on `numpy.isnan`.

Data Alignment

Imagine a collection of time series data with different lengths. It would be convenient to define one sufficiently long array `t` and use it for each time series, regardless of length. pandas (https://pandas.pydata.org/pandas-docs/stable/) provides tools for aligning indexed data. And, unlike most wrappers to `scipy.leastsq`, `Model` can handle pandas objects out of the box, using its data alignment features.

Here I take just a slice of the data and fit it to the full `t`. It is automatically aligned to the correct section of `t` using Series’ index.

```python
model = Model(decay, independent_vars=['t'])
truncated_data = Series(data)[200:800]  # data points 200-800
t = Series(t)  # all 1000 points
result = model.fit(truncated_data, params, t=t)
report_fit(result.params)
```

Out:

```
[[Variables]]
   N:   7.44820825 +/- 0.24899892 (3.34%) (init = 10)
  tau: 2.80229162 +/- 0.12228516 (4.36%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
   C(N, tau) = -0.932
```

Data with missing entries and an unequal length still aligns properly.

```python
model = Model(decay, independent_vars=['t'], nan_policy='omit')
truncated_data_with_holes = Series(data_with_holes)[200:800]
result = model.fit(truncated_data_with_holes, params, t=t)
report_fit(result.params)
```

Out:

```
[[Variables]]
   N:   7.46253421 +/- 0.24975620 (3.35%) (init = 10)
  tau: 2.79210670 +/- 0.12172740 (4.36%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
   C(N, tau) = -0.932
```

Total running time of the script: (0 minutes 0.700 seconds)
13.12 Outlier detection via leave-one-out

Outliers can sometimes be identified by assessing the influence of each datapoint. To assess the influence of one point, we fit the dataset while the point and compare the result with the fit of the full dataset. The code below shows how to do this with lmfit. Note that the presented method is very basic.

```python
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
import lmfit

plt.rcParams['figure.dpi'] = 130
plt.rcParams['figure.autolayout'] = True

Generate test data and model. Apply the model to the data

```python
x = np.linspace(0.3, 10, 100)
np.random.seed(1)
y = 1.0 / (0.1 * x) + 2.0 + 3 * np.random.randn(x.size)

params = lmfit.Parameters()
params.add_many(('a', 0.1), ('b', 1))

def func(x, a, b):
 return 1.0 / (a * x) + b

Make 5 points outliers
idx = np.random.randint(0, x.size, 5)
y[idx] += 10 * np.random.randn(idx.size)

Fit the data
model = lmfit.Model(func, independent_vars=['x'])
fit_result = model.fit(y, x=x, a=0.1, b=2)

and gives the plot and fitting results below:

```python
fit_result.plot_fit()
plt.plot(x[idx], y[idx], 'o', color='r', label='outliers')
plt.show()
print(fit_result.fit_report())
```
Fit the dataset while omitting one data point

```python
best_vals = defaultdict(lambda: np.zeros(x.size))
stderrs = defaultdict(lambda: np.zeros(x.size))
chi_sq = np.zeros_like(x)

for i in range(x.size):
    idx2 = np.arange(0, x.size)
```

(continues on next page)
idx2 = np.delete(idx2, i)
tmp_x = x[idx2]
tmp = model.fit(y[idx2],
 x=tmp_x,
 a=fit_result.params['a'],
 b=fit_result.params['b'])
chi_sq[i] = tmp.chisqr
for p in tmp.params:
 tpar = tmp.params[p]
 best_vals[p][i] = tpar.value
 stderrs[p][i] = (tpar.stderr / fit_result.params[p].stderr)

Plot the influence on the red. chisqr of each point

```python
fig, ax = plt.subplots()
ax.plot(x, (fit_result.chisqr - chi_sq) / chi_sq)
ax.scatter(x[idx],
    fit_result.chisqr / chi_sq[idx] - 1,
    color='r',
    label='outlier')
ax.set_ylabel(r'Relative red. $\chi^2$ change')
ax.set_xlabel('x')
ax.legend()
```

Plot the influence on the parameter value and error of each point

13.12. Outlier detection via leave-one-out
```python
fig, axs = plt.subplots(4, figsize=(4, 7), sharex='col')
axs[0].plot(x, best_vals['a'])
axs[0].scatter(x[idx], best_vals['a'][idx], color='r', label='outlier')
axs[0].set_ylabel('best a')

axs[1].plot(x, best_vals['b'])
axs[1].scatter(x[idx], best_vals['b'][idx], color='r', label='outlier')
axs[1].set_ylabel('best b')

axs[2].plot(x, stderrs['a'])
axs[2].scatter(x[idx], stderrs['a'][idx], color='r', label='outlier')
axs[2].set_ylabel('err a change')

axs[3].plot(x, stderrs['b'])
axs[3].scatter(x[idx], stderrs['b'][idx], color='r', label='outlier')
axs[3].set_ylabel('err b change')

axs[3].set_xlabel('x')
```
Total running time of the script: 0 minutes 2.777 seconds
13.13 Emcee and the Model Interface

```python
import corner
import matplotlib.pyplot as plt
import numpy as np
import lmfit

# Set up a double-exponential function and create a Model

def double_exp(x, a1, t1, a2, t2):
    return a1*np.exp(-x/t1) + a2*np.exp(-(x-0.1) / t2)

model = lmfit.Model(double_exp)

# Generate some fake data from the model with added noise

truths = (3.0, 2.0, -5.0, 10.0)
x = np.linspace(1, 10, 250)
np.random.seed(0)
y = double_exp(x, *truths)+0.1*np.random.randn(x.size)

# Create model parameters and give them initial values

p = model.make_params(a1=4, t1=3, a2=4, t2=3)

# Fit the model using a traditional minimizer, and show the output:

result = model.fit(data=y, params=p, x=x, method='Nelder', nan_policy='omit')

lmfit.report_fit(result)
result.plot()
```
Non-Linear Least-Squares Minimization and Curve-Fitting for Python, Release 1.0.2

Out:

[[Fit Statistics]]
fitting method = Nelder-Mead
function evals = 609
data points = 250
variables = 4
chi-square = 2.33333982
reduced chi-square = 0.00948512
Akaike info crit = -1160.54007
Bayesian info crit = -1146.45423

[[Variables]]
a1: 2.98623689 +/- 0.15010519 (5.03%) (init = 4)
t1: 1.30993186 +/- 0.13449656 (10.27%) (init = 3)
a2: -4.33525597 +/- 0.11765824 (2.71%) (init = 4)

(continues on next page)
t2: 11.8240752 +/- 0.47172610 (3.99%) (init = 3)

[[Correlations]] (unreported correlations are < 0.100)
C(a2, t2) = 0.988
C(t1, a2) = -0.928
C(t1, t2) = -0.885
C(a1, t1) = -0.609
C(a1, a2) = 0.297
C(a1, t2) = 0.232

Calculate parameter covariance using emcee:

- start the walkers out at the best-fit values
- set is_weighted to False to estimate the noise weights
- set some sensible priors on the uncertainty to keep the MCMC in check

```python
emcee_kws = dict(steps=1000, burn=300, thin=20, is_weighted=False, progress=False)
emcee_params = result.params.copy()
emcee_params.add('__lnsigma', value=np.log(0.1), min=np.log(0.001), max=np.log(2.0))
run the MCMC algorithm and show the results:
```

```python
result_emcee = model.fit(data=y, x=x, params=emcee_params, method='emcee', nan_policy='omit', fit_kws=emcee_kws)
```

```python
result_emcee.plot_fit(ax=ax, data_kws=dict(color='gray', markersize=2))
plt.abstractmethod()
```
Out:

The chain is shorter than 50 times the integrated autocorrelation time for 5 parameter(s). Use this estimate with caution and run a longer chain!

\[N/50 = 20; \]

\[\tau: [42.15512406, 49.13844172, 47.97313337, 48.69759859, 39.90675732] \]

[[Variables]]

- a1: 2.99014520 +/- 0.15080185 (5.04%) (init = 2.986237)
- t1: 1.32465508 +/- 0.14246577 (10.75%) (init = 1.309932)
- a2: -4.34626582 +/- 0.12518881 (2.88%) (init = -4.335256)
- t2: 11.7839459 +/- 0.48230303 (4.09%) (init = 11.82408)
- __lnsigma: -2.32797933 +/- 0.04489245 (1.93%) (init = -2.302585)

[[Correlations]] (unreported correlations are < 0.100)

- C(a2, t2) = 0.981
- C(t1, a2) = -0.939
- C(t1, t2) = -0.898
- C(a1, t1) = -0.540

(continues on next page)
check the acceptance fraction to see whether emcee performed well

```python
pastebin
plt.plot(result_emcee.acceptance_fraction)
plt.xlabel('walker')
plt.ylabel('acceptance fraction')
plt.show()
```

try to compute the autocorrelation time

```python
if hasattr(result_emcee, "acor"):
    print("Autocorrelation time for the parameters:")
    print("-----------------------------")
    for i, p in enumerate(result.params):
        print(p, result.acor[i])
```

Plot the parameter covariances returned by emcee using corner

```python
emcee_corner = corner.corner(result_emcee.flatchain, labels=result_emcee.var_names,
                              truths=list(result_emcee.params.valuesdict().values()))
```
median of posterior probability distribution

--

lmfit.report_fit(result_emcee.params)

find the maximum likelihood solution
highest_prob = np.argmax(result_emcee.lnprob)
hp_loc = np.unravel_index(highest_prob, result_emcee.lnprob.shape)
mle_soln = result_emcee.chain[hp_loc]
print("\nMaximum likelihood Estimation")
print('--')
for ix, param in enumerate(emcee_params):
 print(param + ': ' + str(mle_soln[ix]))

quantiles = np.percentile(result_emcee.flatchain['t1'], [2.28, 15.9, 50, 84.2, 97.7])

(continues on next page)
13.14 Calculate Confidence Intervals

Define the residual function, specify “true” parameter values, and generate a synthetic data set with some noise:

```python
import matplotlib.pyplot as plt
from numpy import argsort, exp, linspace, pi, random, sign, sin, unique
from scipy.interpolate import interp1d
from lmfit import (Minimizer, Parameters, conf_interval, conf_interval2d, report_ci, report_fit)

def residual(pars, x, data=None):
    argu = (x*pars['decay'])**2
    shift = pars['shift']
    if abs(shift) > pi/2:
        shift = shift - sign(shift)*pi
    model = pars['amp']*sin(shift + x/pars['period']) * exp(-argu)
    if data is None:
        return model
```

(continues on next page)
\texttt{return} \ model - \ data

\begin{verbatim}
model = Parameters()
model.add('amp', value=14.0)
model.add('period', value=5.33)
model.add('shift', value=0.123)
model.add('decay', value=0.010)

x = linspace(0.0, 250.0, 2500)
noise = random.normal(scale=0.7215, size=x.size)
data = residual(model, x) + noise
\end{verbatim}

Create fitting parameters and set initial values:

\begin{verbatim}
fit_params = Parameters()
fit_params.add('amp', value=13.0)
fit_params.add('period', value=2)
fit_params.add('shift', value=0.0)
fit_params.add('decay', value=0.02)
\end{verbatim}

Set-up the minimizer and perform the fit using leastsq algorithm, and show the report:

\begin{verbatim}
mini = Minimizer(residual, fit_params, fcn_args=(x,), fcn_kws={'data': data})
out = mini.leastsq()
fit = residual(out.params, x)
report_fit(out)
\end{verbatim}

Out:

\begin{verbatim}
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 90
 # data points = 2500
 # variables = 4
 chi-square = 1212.08286
 reduced chi-square = 0.48561012
 Akaike info crit = -1801.87620
 Bayesian info crit = -1778.58002
[[Variables]]
 amp: 13.9952862 +/- 0.04810194 (0.34%) (init = 13)
 period: 5.32947061 +/- 0.00267669 (0.05%) (init = 2)
 shift: 0.12201493 +/- 0.00472513 (3.87%) (init = 0)
 decay: 0.01002913 +/- 3.9913e-05 (0.40%) (init = 0.02)
[[Correlations]] (unreported correlations are < 0.100)
 C(period, shift) = 0.800
 C(amp, decay) = 0.576
\end{verbatim}

Calculate the confidence intervals for parameters and display the results:

\begin{verbatim}
ci, tr = conf_interval(mini, out, trace=True)
report_ci(ci)
names = out.params.keys()
\end{verbatim}
i = 0
gs = plt.GridSpec(4, 4)
sx = {}
sy = {}
for fixed in names:
 j = 0
 for free in names:
 if j in sx and i in sy:
 ax = plt.subplot(gs[i, j], sharex=sx[j], sharey=sy[i])
 elif i in sy:
 ax = plt.subplot(gs[i, j], sharey=sy[i])
 sx[j] = ax
 elif j in sx:
 ax = plt.subplot(gs[i, j], sharex=sx[j])
 sy[i] = ax
 else:
 ax = plt.subplot(gs[i, j])
 sy[i] = ax
 sx[j] = ax
 if i < 3:
 plt.setp(ax.get_xticklabels(), visible=False)
 else:
 ax.set_xlabel(free)
 if j > 0:
 plt.setp(ax.get_yticklabels(), visible=False)
 else:
 ax.set_ylabel(fixed)
 res = tr[fixed]
 prob = res['prob']
 f = prob < 0.96
 x, y = res[free], res[fixed]
 ax.scatter(x[f], y[f], c=1-prob[f], s=200*(1-prob[f]+0.5))
 ax.autoscale(1, 1)
 j += 1
i += 1
It is also possible to calculate the confidence regions for two fixed parameters using the function `conf_interval2d`:

```python
names = list(out.params.keys())

plt.figure()
cm = plt.cm.coolwarm
for i in range(4):
    for j in range(4):
        plt.subplot(4, 4, 16-j*4-i)
        if i != j:
            x, y, m = conf_interval2d(mini, out, names[i], names[j], 20, 20)
            plt.contourf(x, y, m, linspace(0, 1, 10), cmap=cm)
            plt.xlabel(names[i])
            plt.ylabel(names[j])
            x = tr[names[i]][names[i]]
            y = tr[names[i]][names[j]]
```

(continues on next page)
pr = tr[names[i]]['prob']
s = argsort(x)
plt.scatter(x[s], y[s], c=pr[s], s=30, lw=1, cmap=cm)

else:
x = tr[names[i]][names[i]]
y = tr[names[i]]['prob']

t, s = unique(x, True)
f = interp1d(t, y[s], 'slinear')
xn = linspace(x.min(), x.max(), 50)
plt.plot(xn, f(xn), 'g', lw=1)
plt.xlabel(names[i])
plt.ylabel('prob')

plt.show()
13.15 Complex Resonator Model

This notebook shows how to fit the parameters of a complex resonator, using `lmfit.Model` and defining a custom `Model` class.

Following Khalil et al. (https://arxiv.org/abs/1108.3117), we can model the forward transmission of a microwave resonator with total quality factor Q, coupling quality factor Q_e, and resonant frequency f_0 using:

$$
S_{21}(f) = 1 - \frac{QQ_e^{-1}}{1 + 2jQ(f - f_0)/f_0}
$$

S_{21} is thus a complex function of a real frequency.

By allowing Q_e to be complex, this model can take into account mismatches in the input and output transmission impedances.

```python
import matplotlib.pyplot as plt
import numpy as np
import lmfit

Since `scipy.optimize` and `lmfit` require real parameters, we represent $Q_e$ as $Q_e\text{\_real } + \text{1j}\times Q_e\text{\_imag}$.

```python
def linear_resonator(f, f_0, Q, Q_e_real, Q_e_imag):
 Q_e = Q_e_real + 1j*Q_e_imag
 return 1 - (Q * Q_e**-1 / (1 + 2j * Q * (f - f_0) / f_0))
```

The standard practice of defining an `lmfit` model is as follows:

```python
class ResonatorModel(lmfit.model.Model):
 __doc__ = "resonator model" + lmfit.models.COMMON_DOC

 def __init__(self, *args, **kwargs):
 # pass in the defining equation so the user doesn't have to later.
 super().__init__(linear_resonator, *args, **kwargs)

 self.set_param_hint('Q', min=0) # Enforce Q is positive

 def guess(self, data, f=None, **kwargs):
 verbose = kwargs.pop('verbose', None)
 if f is None:
 return

 argmin_s21 = np.abs(data).argmin()
 fmin = f.min()
 fmax = f.max()
 f_0_guess = f[argmin_s21] # guess that the resonance is the lowest point
 Q_min = 0.1 * (f_0_guess/(fmax-fmin)) # assume the user isn't trying to fit
 # just a small part of a resonance curve.
 delta_f = np.diff(f) # assume f is sorted
 min_delta_f = delta_f[delta_f > 0].min()
 Q_max = f_0_guess/min_delta_f # assume data actually samples the resonance reasonably
 Q_guess = np.sqrt(Q_min*Q_max) # geometric mean, why not?
 Q_e_real_guess = Q_guess/(1-np.abs(data[argmin_s21]))

 if verbose:
 print("fmin=", fmin, "fmax=", fmax, "f_0_guess=", f_0_guess)
 print("Qmin=", Q_min, "Q_max=", Q_max, "Q_guess=", Q_guess, "Q_e_real=
 guess=", Q_e_real_guess)
```

(continues on next page)
Now let's use the model to generate some fake data:

```python
resonator = ResonatorModel()
true_params = resonator.make_params(f_0=100, Q=10000, Q_e_real=9000, Q_e_imag=-9000)

f = np.linspace(99.95, 100.05, 100)
true_s21 = resonator.eval(params=true_params, f=f)
noise_scale = 0.02
np.random.seed(123)
measured_s21 = true_s21 + noise_scale*(np.random.randn(100) + 1j*np.random.randn(100))

plt.figure()
plt.plot(f, 20*np.log10(np.abs(measured_s21)))
plt.ylabel('|S21| (dB)')
plt.xlabel('MHz')
plt.title('simulated measurement')
```

Try out the guess method we added:
guess = resonator.guess(measured_s21, f=f, verbose=True)

Out:

```
fmin= 99.95 fmax= 100.05 f_0_guess= 100.00353535353536
Qmin= 99.003.50000055433 Q_max= 3146.537781821432 Q_e_real_ _guess= 5082.2474265369565
```

And now fit the data using the guess as a starting point:

```
result = resonator.fit(measured_s21, params=guess, f=f, verbose=True)

print(result.fit_report() + 'n')
result.params.pretty_print()
```

Out:

```
[[Model]]
 Model(linear_resonator)
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 36
 # data points = 200
 # variables = 4
 chi-square = 0.08533642
 reduced chi-square = 4.3539e-04
 Akaike info crit = -1543.89425
 Bayesian info crit = -1530.70099
[[Variables]]
 f_0: 100.000096 +/- 7.0378e-05 (0.00%) (init = 100.0035)
 Q: 10059.4926 +/- 142.294761 (1.41%) (init = 3146.538)
 Q_e_real: 9180.61935 +/- 133.776862 (1.46%) (init = 5082.247)
 Q_e_imag: -9137.03303 +/- 133.770211 (1.46%) (init = 0)
[[Correlations]] (unreported correlations are < 0.100)
 C(Q, Q_e_real) = 0.518
 C(f_0, Q_e_imag) = 0.517
 C(f_0, Q_e_real) = 0.515
 C(Q, Q_e_imag) = -0.515

Name Value Min Max Stderr Vary Expr Brute_Step
Q 1.006e+04 100 9.9e+04 142.3 True None None
Q_e_imag -9137 -inf inf 133.8 True None None
Q_e_real 9181 -inf inf 133.8 True None None
f_0 100 99.95 100 7.038e-05 True None None
```

Now we’ll make some plots of the data and fit. Define a convenience function for plotting complex quantities:

```
def plot_ri(data, *args, **kwargs):
 plt.plot(data.real, data.imag, *args, **kwargs)

fit_s21 = resonator.eval(params=result.params, f=f)
guess_s21 = resonator.eval(params=guess, f=f)

plt.figure()
plot_ri(measured_s21, '.')
plot_ri(fit_s21, 'r.-', label='best fit')
```

(continues on next page)
plot_ri(guess_s21, 'k--', label='initial fit')
plt.legend(loc='best')
plt.xlabel('Re(S21)')
plt.ylabel('Im(S21)')

plt.figure()
plt.plot(f, 20*np.log10(np.abs(measured_s21)), '.')
plt.plot(f, 20*np.log10(np.abs(fit_s21)), 'r.-', label='best fit')
plt.plot(f, 20*np.log10(np.abs(guess_s21)), 'k--', label='initial fit')
plt.legend(loc='best')
plt.ylabel('|S21| (dB)')
plt.xlabel('MHz')
13.16 Model Selection using lmfit and emcee

FIXME: this is a useful examples; however, it doesn’t run correctly anymore as the PTSampler was removed in emcee v3...

**emcee** can be used to obtain the posterior probability distribution of parameters, given a set of experimental data. This notebook shows how it can be used for Bayesian model selection.

```python
import matplotlib.pyplot as plt
import numpy as np
import lmfit

Define a Gaussian lineshape and generate some data:

def gauss(x, a_max, loc, sd):
 return a_max * np.exp(-(x - loc) / sd)**2

x = np.linspace(3, 7, 250)
np.random.seed(0)
y = 4 + 10 * x + gauss(x, 200, 5, 0.5) + gauss(x, 60, 5.8, 0.2)
```

Total running time of the script: (0 minutes 0.781 seconds)
dy = np.sqrt(y)
y += dy * np.random.randn(y.size)

Plot the data:

plt.errorbar(x, y)

Define the normalised residual for the data:

```python
def residual(p, just_generative=False):
 v = p.valuesdict()
 generative = v['a'] + v['b'] * x
 M = 0
 while 'a_max%d' % M in v:
 generative += gauss(x, v['a_max%d' % M], v['loc%d' % M], v['sd%d' % M])
 M += 1
 if just_generative:
 return generative
 return (generative - y) / dy
```

Create a Parameter set for the initial guesses:

```python
def initial_peak_params(M):
 p = lmfit.Parameters()
 # a and b give a linear background
 a = np.mean(y)
 b = 1
 # a_max, loc and sd are the amplitude, location and SD of each Gaussian component
 a_max = np.max(y)
 loc = np.mean(x)
 sd = (np.max(x) - np.min(x)) * 0.5
 p.add_many(('a', a, True, 0, 10), ('b', b, True, 1, 15))
 for i in range(M):
 p.add_many(('a_max%d' % i, 0.5 * a_max, True, 10, a_max),
 ('loc%d' % i, loc, True, np.min(x), np.max(x)),
 ('sd%d' % i, sd, True, 0.1, np.max(x) - np.min(x)))
 return p
```

Solving with minimize gives the Maximum Likelihood solution.

```python
pl = initial_peak_params(1)
ml1 = lmfit.minimize(residual, pl, method='differential_evolution')
```

```python
lmfit.printfuncs.report_fit(ml1.params, min_correl=0.5)
```

From inspection of the data above we can tell that there is going to be more than 1 Gaussian component, but how many are there? A Bayesian approach can be used for this model selection problem. We can do this with `lmfit.emcee`, which uses the `emcee` package to do a Markov Chain Monte Carlo sampling of the posterior probability distribution. `lmfit.emcee` requires a function that returns the log-posterior probability. The log-posterior probability is a sum of the log-prior probability and log-likelihood functions.
The log-prior probability encodes information about what you already believe about the system. *lmfit.emcee* assumes that this log-prior probability is zero if all the parameters are within their bounds and -np.inf if any of the parameters are outside their bounds. As such it’s a uniform prior.

The log-likelihood function is given below. To use non-uniform priors then should include these terms in *lnprob*. This is the log-likelihood probability for the sampling.

```python
def lnprob(p):
 resid = residual(p, just_generative=True)
 return -0.5 * np.sum(((resid - y) / dy)**2 + np.log(2 * np.pi * dy**2))
```

To start with we have to create the minimizers and *burn* them in. We create 4 different minimizers representing 0, 1, 2 or 3 Gaussian contributions. To do the model selection we have to integrate the over the log-posterior distribution to see which has the higher probability. This is done using the `thermodynamic_integration_log_evidence` method of the `sampler` attribute contained in the *lmfit.Minimizer* object.

```python
Work out the log-evidence for different numbers of peaks:
total_steps = 310
burn = 300
thin = 10
ntemps = 15
workers = 1 # the multiprocessing does not work with sphinx-gallery
log_evidence = []
res = []

set up the Minimizers
for i in range(4):
 p0 = initial_peak_params(i)
 # you can't use lnprob as a userfcn with minimize because it needs to be
 # maximised
 mini = lmfit.Minimizer(residual, p0)
 out = mini.minimize(method='differential_evolution')
 res.append(out)
 mini = []

burn in the samplers
for i in range(4):
 # do the sampling
 mini.append(lmfit.Minimizer(lnprob, res[i].params))
 out = mini[i].emcee(steps=total_steps, ntemps=ntemps, workers=workers,
 # reuse_sampler=True, float_behavior='posterior',
 progress=False)
 # get the evidence
 print(i, total_steps, mini[i].sampler.thermodynamic_integration_log_evidence())
 log_evidence.append(mini[i].sampler.thermodynamic_integration_log_evidence()[0])

Once we’ve burned in the samplers we have to do a collection run. We thin out the MCMC chain to reduce autocorrelation between successive samples.

```python
for j in range(6):
    total_steps += 100
    for i in range(4):
        # do the sampling
        res = mini[i].emcee(burn=burn, steps=100, thin=thin, ntemps=ntemps,
        workers=workers, reuse_sampler=True, progress=False)
        # get the evidence
        print(i, total_steps, mini[i].sampler.thermodynamic_integration_log_evidence())
```

(continues on next page)
The Bayes factor is related to the exponential of the difference between the log-evidence values. Thus, 0 peaks is not very likely compared to 1 peak. But 1 peak is not as good as 2 peaks. 3 peaks is not that much better than 2 peaks.

```python
r01 = np.exp(log_evidence[-4] - log_evidence[-3])
r12 = np.exp(log_evidence[-3] - log_evidence[-2])
r23 = np.exp(log_evidence[-2] - log_evidence[-1])
print(r01, r12, r23)
```

These numbers tell us that zero peaks is 0 times as likely as one peak. Two peaks is 7e49 times more likely than one peak. Three peaks is 1.1 times more likely than two peaks. With this data one would say that two peaks is sufficient. Caution has to be taken with these values. The log-priors for this sampling are uniform but improper, i.e. they are not normalised properly. Internally the lnprob probability is calculated as 0 if all parameters are within their bounds and -np.inf if any parameter is outside the bounds. The lnprob function defined above is the log-likelihood alone. Remember, that the log-posterior probability is equal to the sum of the log-prior and log-likelihood probabilities. Extra terms can be added to the lnprob function to calculate the normalised log-probability. These terms would look something like:

\[
\log\left(\prod_{i} \frac{1}{\text{max}_i - \text{min}_i}\right)
\]

where \(\text{max}_i\) and \(\text{min}_i\) are the upper and lower bounds for the parameter, and the prior is a uniform distribution. Other types of prior are possible. For example, you might expect the prior to be Gaussian.

Total running time of the script: (0 minutes 0.000 seconds)

13.17 Fit Two Dimensional Peaks

This example illustrates how to handle two-dimensional data with lmfit.

```python
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import griddata

import lmfit
from lmfit.lineshapes import gaussian2d, lorentzian
```
13.17.1 Two-dimensional Gaussian

We start by considering a simple two-dimensional gaussian function, which depends on coordinates \((x, y)\). The most general case of experimental data will be irregularly sampled and noisy. Let’s simulate some:

```python
npoints = 10000
x = np.random.rand(npoints)*10 - 4
y = np.random.rand(npoints)*5 - 3
z = gaussian2d(x, y, amplitude=30, centerx=2, centery=-.5, sigmax=.6, sigmay=.8)
z += 2*(np.random.rand(*z.shape)-.5)
error = np.sqrt(z+1)
```

To plot this, we can interpolate the data onto a grid.

```python
X, Y = np.meshgrid(np.linspace(x.min(), x.max(), 100),
                   np.linspace(y.min(), y.max(), 100))
Z = griddata((x, y), z, (X, Y), method='linear', fill_value=0)

fig, ax = plt.subplots()
art = ax.pcolor(X, Y, Z, shading='auto')
plt.colorbar(art, ax=ax, label='z')
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()
```

In this case, we can use a built-in model to fit
model = lmfit.models.Gaussian2dModel()
params = model.guess(z, x, y)
result = model.fit(z, x=x, y=y, params=params, weights=1/error)

lmfit.report_fit(result)

Out:

```
[Fit Statistics]
  # fitting method = leastsq
  # function evals = 74
  # data points = 10000
  # variables = 5
  chi-square = 23221.7077
  reduced chi-square = 2.3233244
  Akaike info crit = 8435.02425
  Bayesian info crit = 8471.07595

[Variables]
  amplitude: 27.6616344 +/- 0.68573297 (2.48%) (init = 19.87323)
  centerx: 1.99810718 +/- 0.01471383 (0.74%) (init = 2.123473)
  centery: -0.49717812 +/- 0.02011906 (4.05%) (init = -0.6082653)
  sigmax: 0.55187429 +/- 0.01262250 (2.29%) (init = 1.66637)
  sigmay: 0.73663336 +/- 0.01696361 (2.30%) (init = 0.8328972)
  fwhmx: 1.29956462 +/- 0.02972371 (2.29%) == '2.3548200*sigmax'
  fwhmy: 1.73463898 +/- 0.03994626 (2.30%) == '2.3548200*sigmay'
  height: 106.882390 +/- 3.63826498 (3.40%) == '1.5707963*amplitude/(max(1e-15, sigmax)*max(1e-15, sigmay))'

[Correlations] (unreported correlations are < 0.100)
  C(amplitude, sigmay) = 0.253
  C(amplitude, sigmax) = 0.220
```

To check the fit, we can evaluate the function on the same grid we used before and make plots of the data, the fit and the difference between the two.

```
fig, axs = plt.subplots(2, 2, figsize=(10, 10))

vmax = np.nanpercentile(Z, 99.9)

ax = axs[0, 0]
art = ax.pcolor(X, Y, Z, vmin=0, vmax=vmax, shading='auto')
plt.colorbar(art, ax=ax, label='z')
ax.set_title('Data')

ax = axs[0, 1]
fit = model.func(X, Y, **result.best_values)
art = ax.pcolor(X, Y, fit, vmin=0, vmax=vmax, shading='auto')
plt.colorbar(art, ax=ax, label='z')
ax.set_title('Fit')

ax = axs[1, 0]
fit = model.func(X, Y, **result.best_values)
art = ax.pcolor(X, Y, Z-fit, vmin=0, vmax=10, shading='auto')
plt.colorbar(art, ax=ax, label='z')
ax.set_title('Data - Fit')

for ax in axs.ravel():
    ax.set_xlabel('x')
    ax.set_ylabel('y')
```

(continues on next page)
axs[1, 1].remove()
plt.show()
13.17.2 Two-dimensional off-axis Lorentzian

We now go on to show a harder example, in which the peak has a Lorentzian profile and an off-axis anisotropic shape. This can be handled by applying a suitable coordinate transform and then using the `lorentzian` function that lmfit provides in the lineshapes module.

```python
def lorentzian2d(x, y, amplitude=1., centerx=0., centery=0., sigmax=1., sigmay=1., rotation=0):
    """Return a two dimensional lorentzian.
    The maximum of the peak occurs at `centerx` and `centery` with widths `sigmax` and `sigmay` in the x and y directions respectively. The peak can be rotated by choosing the value of `rotation` in radians.
    """
    xp = (x - centerx)*np.cos(rotation) - (y - centery)*np.sin(rotation)
    yp = (x - centerx)*np.sin(rotation) + (y - centery)*np.cos(rotation)
    R = (xp/sigmax)**2 + (yp/sigmay)**2
    return 2*amplitude*lorentzian(R)/(np.pi*sigmax*sigmay)
```

Data can be simulated and plotted in the same way as we did before.

```python
npoints = 10000
x = np.random.rand(npoints)*10 - 4
y = np.random.rand(npoints)*5 - 3
z = lorentzian2d(x, y, amplitude=30, centerx=2, centery=-.5, sigmax=.6, sigmay=1.2, rotation=30*np.pi/180)
z += 2*(np.random.rand(*z.shape)-.5)
error = np.sqrt(z+1)
X, Y = np.meshgrid(np.linspace(x.min(), x.max(), 100),
                   np.linspace(y.min(), y.max(), 100))
Z = griddata((x, y), z, (X, Y), method='linear', fill_value=0)

fig, ax = plt.subplots()
ax.set_xlabel('x')
ax.set_ylabel('y')
art = ax.pcolor(X, Y, Z, shading='auto')
plt.colorbar(art, ax=ax, label='z')
plt.show()
```
To fit, create a model from the function. Don’t forget to tell lmfit that both x and y are independent variables. Keep in mind that lmfit will take the function keywords as default initial guesses in this case and that it will not know that certain parameters only make physical sense over restricted ranges. For example, peak widths should be positive and the rotation can be restricted over a quarter circle.

```python
model = lmfit.Model(lorentzian2d, independent_vars=['x', 'y'])
params = model.make_params(amplitude=10, centerx=x[np.argmax(z)], centery=y[np.argmax(z)])
params['rotation'].set(value=0.1, min=0, max=np.pi/2)
params['sigmax'].set(value=1, min=0)
params['sigmay'].set(value=2, min=0)
result = model.fit(z, x=x, y=y, params=params, weights=1/error)
```

Out:

```
[[Fit Statistics]]
  # fitting method    = leastsq
  # function evals    = 73
  # data points       = 10000
  # variables         = 6
  chi-square          = 11554.1100
  reduced chi-square  = 1.15610466
  Akaike info crit    = 1456.56121
```

(continues on next page)
Bayesian info crit = 1499.82325

[[Variables]]
- amplitude: 25.4520941 +/- 0.50893773 (2.00%) (init = 10)
- centerx: 1.99532738 +/- 0.01162425 (0.58%) (init = 2.077652)
- centery: -0.50221822 +/- 0.01657490 (3.30%) (init = -0.5359784)
- sigmax: 0.50576995 +/- 0.01047067 (2.07%) (init = 1)
- sigmay: 1.11968508 +/- 0.02191517 (1.96%) (init = 2)
- rotation: 0.48387509 +/- 0.01534530 (3.17%) (init = 0.1)

[[Correlations]] (unreported correlations are < 0.100)
- C(centerx, centery) = 0.537
- C(amplitude, sigmax) = 0.371
- C(amplitude, sigmay) = 0.250

The process of making plots to check it worked is the same as before.

```python
fig, axs = plt.subplots(2, 2, figsize=(10, 10))

vmax = np.nanpercentile(Z, 99.9)

ax = axs[0, 0]
art = ax.pcolor(X, Y, Z, vmin=0, vmax=vmax, shading='auto')
plt.colorbar(art, ax=ax, label='z')
ax.set_title('Data')

ax = axs[0, 1]
fit = model.func(X, Y, **result.best_values)
art = ax.pcolor(X, Y, fit, vmin=0, vmax=vmax, shading='auto')
plt.colorbar(art, ax=ax, label='z')
ax.set_title('Fit')

ax = axs[1, 0]
fit = model.func(X, Y, **result.best_values)
art = ax.pcolor(X, Y, Z-fit, vmin=0, vmax=10, shading='auto')
plt.colorbar(art, ax=ax, label='z')
ax.set_title('Data - Fit')

for ax in axs.ravel():
    ax.set_xlabel('x')
    ax.set_ylabel('y')
axs[1, 1].remove()
plt.show()
```
13.18 Global minimization using the \texttt{brute} method (a.k.a. grid search)

This notebook shows a simple example of using \texttt{lmfit.minimize.brute} that uses the method with the same name from \texttt{scipy.optimize}.

The method computes the function's value at each point of a multidimensional grid of points, to find the global minimum of the function. It behaves identically to \texttt{scipy.optimize.brute} in case finite bounds are given on all varying parameters, but will also deal with non-bounded parameters (see below).
Let's start with the example given in the documentation of SciPy:

“We illustrate the use of brute to seek the global minimum of a function of two variables that is given as the sum of a positive-definite quadratic and two deep “Gaussian-shaped” craters. Specifically, define the objective function f as the sum of three other functions, \(f = f_1 + f_2 + f_3 \). We suppose each of these has a signature \((z, *\text{params})\), where \(z = (x, y) \), and \(\text{params} \) and the functions are as defined below.”

First, we create a set of Parameters where all variables except \(x \) and \(y \) are given fixed values.

```python
params = Parameters()
params.add_many(
    ('a', 2, False),
    ('b', 3, False),
    ('c', 7, False),
    ('d', 8, False),
    ('e', 9, False),
    ('f', 10, False),
    ('g', 44, False),
    ('h', -1, False),
    ('i', 2, False),
    ('j', 26, False),
    ('k', 1, False),
    ('l', -2, False),
    ('scale', 0.5, False),
    ('x', 0.0, True),
    ('y', 0.0, True))
```

Second, create the three functions and the objective function:

```python
def f1(p):
    par = p.valuesdict()
    return (par['a'] * par['x']**2 + par['b'] * par['x'] * par['y'] +
            par['c'] * par['y']**2 + par['d'] * par['x'] + par['e'] * par['y'] +
            par['f'])

def f2(p):
    par = p.valuesdict()
    return (-1.0 * par['g'] * np.exp((-((par['x'] - par['h'])**2 +
                                     (par['y'] - par['i'])**2)) / par['scale']))

def f3(p):
    par = p.valuesdict()
    return (-1.0 * par['j'] * np.exp((-((par['x'] - par['k'])**2 +
                                      (par['y'] - par['l'])**2)) / par['scale']))

def f(params):
    return f1(params) + f2(params) + f3(params)
```
Just as in the documentation we will do a grid search between -4 and 4 and use a stepsize of 0.25. The bounds can be set as usual with the `min` and `max` attributes, and the stepsize is set using `brute_step`.

```python
params['x'].set(min=-4, max=4, brute_step=0.25)
params['y'].set(min=-4, max=4, brute_step=0.25)
```

Performing the actual grid search is done with:

```python
fitter = Minimizer(f, params)
result = fitter.minimize(method='brute')
```

, which will increment x and y between -4 in increments of 0.25 until 4 (not inclusive).

```python
grid_x, grid_y = [np.unique(par.ravel()) for par in result.brute_grid]
print(grid_x)
```

Out:

```
[-4. -3.75 -3.5 -3.25 -3. -2.75 -2.5 -2.25 -2. -1.75 -1.5 -1.25 -1. -0.75 -0.5 -0.25 0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2. 2.25 2.5 2.75 3. 3.25 3.5 3.75]
```

The objective function is evaluated on this grid, and the raw output from `scipy.optimize.brute` is stored in the `MinimizerResult` as `brute_<parname>` attributes. These attributes are:

- `result.brute_x0` – A 1-D array containing the coordinates of a point at which the objective function had its minimum value.
- `result.brute_fval` – Function value at the point x_0.
- `result.brute_grid` – Representation of the evaluation grid. It has the same length as x_0.

```python
print(result.brute_x0)
```

Out:

```
[-1. 1.75]
```

```python
print(result.brute_fval)
```

Out:

```
-2.8923637137222027
```

```python
print(result.brute_grid)
```

Out:

```
[[[-4. -4. -4. ... -4. -4. -4. ]
  [-3.75 -3.75 -3.75 ... -3.75 -3.75 -3.75]
  [-3.5 -3.5 -3.5 ... -3.5 -3.5 -3.5 ]
  ...
  [ 3.5 3.5 3.5 ... 3.5 3.5 3.5 ]
  [ 3.75 3.75 3.75 ... 3.75 3.75 3.75]]

[[[-4. -3.75 -3.5 ... 3.25 3.5 3.75]
  [-4. -3.75 -3.5 ... 3.25 3.5 3.75]
  ...

(continues on next page)
result.brute_Jout – Function values at each point of the evaluation grid, i.e., Jout = func(*grid).

print(result.brute_Jout)

Out:

```
[[134. 119.6875 106.25 ... 74.18749997 85.24999999 97.1875]
[129.125 115. 101.75 ... 74.74999948 85.99999987 98.12499997]
[124.5 110.5625 97.5 ... 75.5624928 86.99999818 99.31249964]]
```

Reassuringly, the obtained results are identical to using the method in SciPy directly!

**Example 2: fit of a decaying sine wave**

In this example, we will explain some of the options of the algorithm.

We start off by generating some synthetic data with noise for a decaying sine wave, define an objective function and create a Parameter set.

```python
x = np.linspace(0, 15, 301)
np.random.seed(7)
n = np.random.normal(size=x.size, scale=0.2)
data = (5. * np.sin(2*x - 0.1) * np.exp(-x*x*0.025) + n)
plt.plot(x, data, 'b')
```

```python
def fcn2min(params, x, data):
 """Model decaying sine wave, subtract data."""
 amp = params['amp']
 shift = params['shift']
 omega = params['omega']
 decay = params['decay']
 model = amp * np.sin(x*omega + shift) * np.exp(-x*x*decay)
 return model - data
```

```python
create a set of Parameters
params = Parameters()
params.add('amp', value=7, min=2.5)
params.add('decay', value=0.05)
params.add('shift', value=0.0, min=-np.pi/2., max=np.pi/2)
params.add('omega', value=3, max=5)
```
In contrast to the implementation in SciPy (as shown in the first example), varying parameters do not need to have finite bounds in lmfit. However, in that case they do need the `brute_step` attribute specified, so let’s do that:

```python
params['amp'].set(brute_step=0.25)
params['decay'].set(brute_step=0.005)
params['omega'].set(brute_step=0.25)
```

Our initial parameter set is now defined as shown below and this will determine how the grid is set-up.

```python
params.pretty_print()
```

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Min</th>
<th>Max</th>
<th>Stderr</th>
<th>Vary</th>
<th>Expr</th>
<th>Brute_Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>amp</td>
<td>7</td>
<td>2.5</td>
<td>inf</td>
<td>None</td>
<td>True</td>
<td>None</td>
<td>0.25</td>
</tr>
<tr>
<td>decay</td>
<td>0.05</td>
<td>-inf</td>
<td>inf</td>
<td>None</td>
<td>True</td>
<td>None</td>
<td>0.005</td>
</tr>
<tr>
<td>omega</td>
<td>3</td>
<td>-inf</td>
<td>5</td>
<td>None</td>
<td>True</td>
<td>None</td>
<td>0.25</td>
</tr>
<tr>
<td>shift</td>
<td>0</td>
<td>-1.571</td>
<td>1.571</td>
<td>None</td>
<td>True</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
```

First, we initialize a Minimizer and perform the grid search:

```python
fitter = Minimizer(fcn2min, params, fcn_args=(x, data))
result_brute = fitter.minimize(method='brute', Ns=25, keep=25)
```

We used two new parameters here: `Ns` and `keep`. The parameter `Ns` determines the 'number of grid points along the axes' similarly to its usage in SciPy. Together with `brute_step`, `min` and `max` for a Parameter it will dictate how
the grid is set-up:

(1) finite bounds are specified (“SciPy implementation”): uses `brute_step` if present (in the example above) or uses
`Ns` to generate the grid. The latter scenario that interpolates `Ns` points from `min` to `max` (inclusive), is here shown for
the parameter `shift`:

```python
par_name = 'shift'
indx_shift = result_brute.var_names.index(par_name)
grid_shift = np.unique(result_brute.brute_grid[indx_shift].ravel())
print("parameter = {} number of steps = {} grid = \{\}").format(par_name, len(grid_shift), grid_shift)
```

Out:

```
parameter = shift
number of steps = 25
grid = [-1.57079633 -1.43989663 -1.30899694 -1.17809725 -1.04719755 -0.91629786
-0.78539816 -0.65449847 -0.52359878 -0.39269908 -0.26179939 -0.13089969
 0. 0.13089969 0.26179939 0.39269908 0.52359878 0.65449847
 0.78539816 0.91629786 1.04719755 1.17809725 1.30899694 1.43989663 1.57079633]
```

If finite bounds are not set for a certain parameter then the user **must** specify `brute_step` - three more scenarios
are considered here:

(2) lower bound (min) and `brute_step` are specified: range = (min, min + `Ns` * `brute_step`, `brute_step`)

```python
par_name = 'amp'
indx_shift = result_brute.var_names.index(par_name)
grid_shift = np.unique(result_brute.brute_grid[indx_shift].ravel())
print("parameter = {} number of steps = {} grid = \{\}").format(par_name, len(grid_shift), grid_shift)
```

Out:

```
parameter = amp
number of steps = 25
grid = [2.5 2.75 3. 3.25 3.5 3.75 4. 4.25 4.5 4.75 5. 5.25 5.5 5.75
 6. 6.25 6.5 6.75 7. 7.25 7.5 7.75 8. 8.25 8.5]
```

(3) upper bound (max) and `brute_step` are specified: range = (max - `Ns` * `brute_step`, max, `brute_step`)

```python
par_name = 'omega'
indx_shift = result_brute.var_names.index(par_name)
grid_shift = np.unique(result_brute.brute_grid[indx_shift].ravel())
print("parameter = {} number of steps = {} grid = \{\}").format(par_name, len(grid_shift), grid_shift)
```

Out:

```
parameter = omega
number of steps = 25
grid = [-1.25 -1. -0.75 -0.5 -0.25 0. 0.25 0.5 0.75 1. 1.25 1.5
 1.75 2. 2.25 2.5 2.75 3. 3.25 3.5 3.75 4. 4.25 4.5
 4.75]
```

(4) numerical value (value) and `brute_step` are specified: range = (value - (`Ns`//2) * `brute_step`, value + (`Ns`//2) * `brute_step`, `brute_step`)

```python
par_name = 'omega'
indx_shift = result_brute.var_names.index(par_name)
grid_shift = np.unique(result_brute.brute_grid[indx_shift].ravel())
print("parameter = {} number of steps = {} grid = \{\}").format(par_name, len(grid_shift), grid_shift)
```

Out:

```
parameter = omega
number of steps = 25
grid = [-1.25 -1. -0.75 -0.5 -0.25 0. 0.25 0.5 0.75 1. 1.25 1.5
 1.75 2. 2.25 2.5 2.75 3. 3.25 3.5 3.75 4. 4.25 4.5
 4.75]
```
par_name = 'decay'
indx_shift = result_brute.var_names.index(par_name)
grid_shift = np.unique(result_brute.brute_grid[indx_shift].ravel())
print("parameter = {}
number of steps = {}
grid = 
".format(par_name, len(grid_shift), grid_shift))

Out:

The MinimizerResult contains all the usual best-fit parameters and fitting statistics. For example, the optimal solution from the grid search is given below together with a plot:

print(fit_report(result_brute))
plt.plot(x, data, 'b')
plt.plot(x, data + fcn2min(result_brute.params, x, data), 'r--')

Out:
We can see that this fit is already very good, which is what we should expect since our brute force grid is sampled rather finely and encompasses the “correct” values.

In a more realistic, complicated example the brute method will be used to get reasonable values for the parameters and perform another minimization (e.g., using leastsq) using those as starting values. That is where the keep parameter comes into play: it determines the “number of best candidates from the brute force method that are stored in the candidates attribute”. In the example above we store the best-ranking 25 solutions (the default value is 50 and storing all the grid points can be accomplished by choosing all). The candidates attribute contains the parameters and chisqr from the brute force method as a namedtuple, ('Candidate', ['params', 'score']), sorted on the (lowest) chisqr value. To access the values for a particular candidate one can use result.candidate[#].params or result.candidate[#].score, where a lower # represents a better candidate. The show_candidates(#) uses the pretty_print() method to show a specific candidate-# or all candidates when no number is specified.

The optimal fit is, as usual, stored in the MinimizerResult.params attribute and is, therefore, identical to result_brute.show_candidates(1).

result_brute.show_candidates(1)

Out:

Candidate #1, chisqr = 11.935
Name Value Min Max Stderr Vary Expr Brute_Step
amp 5 2.5 inf None True None 0.25
decay 0.025 -inf inf None True None 0.005
omega 2 -inf 5 None True None 0.25
shift -0.1309 -1.571 1.571 None True None None

In this case, the next-best scoring candidate has already a chisqr that increased quite a bit:

result_brute.show_candidates(2)

Out:

Candidate #2, chisqr = 13.994
Name Value Min Max Stderr Vary Expr Brute_Step
amp 4.75 2.5 inf None True None 0.25
decay 0.025 -inf inf None True None 0.005

(continues on next page)
and is, therefore, probably not so likely... However, as said above, in most cases you’ll want to do another mini-
mization using the solutions from the brute method as starting values. That can be easily accomplished as shown in
the code below, where we now perform a leastsq minimization starting from the top-25 solutions and accept the
solution if the chisqr is lower than the previously ‘optimal’ solution:

```python
best_result = copy.deepcopy(result_brute)
for candidate in result_brute.candidates:
 trial = fitter.minimize(method='leastsq', params=candidate.params)
 if trial.chisqr < best_result.chisqr:
 best_result = trial
```

From the leastsq minimization we obtain the following parameters for the most optimal result:

```plaintext
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 21
 # data points = 301
 # variables = 4
 chi-square = 10.8653514
 reduced chi-square = 0.03658367
 Akaike info crit = -991.780924
 Bayesian info crit = -976.952483
[[Variables]]
 amp: 5.00323088 +/- 0.03805940 (0.76%) (init = 5.25)
 decay: 0.02563850 +/- 4.4571e-04 (1.74%) (init = 0.025)
 shift: -0.09162988 +/- 0.00978382 (10.68%) (init = 0)
 omega: 1.99611629 +/- 0.00316225 (0.16%) (init = 2)
[[Correlations]] (unreported correlations are < 0.100)
 C(shift, omega) = -0.785
 C(amp, decay) = 0.584
 C(amp, shift) = -0.121
```

As expected the parameters have not changed significantly as they were already very close to the “real” values, which
can also be appreciated from the plots below.

```python
plt.plot(x, data, 'b')
plt.plot(x, data + fcn2min(result_brute.params, x, data), 'r--',
 label='brute')
plt.plot(x, data + fcn2min(best_result.params, x, data), 'g--',
 label='brute followed by leastsq')
plt.legend()
```
Finally, the results from the brute force grid-search can be visualized using the rather lengthy Python function below (which might get incorporated in lmfit at some point).

```python
def plot_results_brute(result, best_vals=True, varlabels=None, output=None):
 """Visualize the result of the brute force grid search.

 The output file will display the chi-square value per parameter and contour
 plots for all combination of two parameters.

 Inspired by the 'corner' package (https://github.com/dfm/corner.py).

 Parameters

 result : :class:`lmfit.minimizer.MinimizerResult`
 Contains the results from the :meth:`brute` method.

 best_vals : bool, optional
 Whether to show the best values from the grid search (default is True).

 varlabels : list, optional
 If None (default), use 'result.var_names' as axis labels, otherwise
 use the names specified in 'varlabels'.

 output : str, optional
 Name of the output PDF file (default is 'None')
```
(continues on next page)
```python
npars = len(result.var_names)
_fig, axes = plt.subplots(npars, npars)

if not varlabels:
 varlabels = result.var_names
if best_vals and isinstance(best_vals, bool):
 best_vals = result.params

for i, par1 in enumerate(result.var_names):
 for j, par2 in enumerate(result.var_names):

 # parameter vs chi2 in case of only one parameter
 if npars == 1:
 axes.plot(result.brute_grid, result.brute_Jout, 'o', ms=3)
 axes.set_ylabel(r'χ^2')
 axes.set_xlabel(varlabels[i])
 if best_vals:
 axes.axvline(best_vals[par1].value, ls='dashed', color='r')

 # parameter vs chi2 profile on top
 elif i == j and j < npars-1:
 if i == 0:
 ax = axes[0, j].axis('off')
 ax = axes[i, j+1]
 red_axis = tuple([a for a in range(npars) if a != i])
 ax.plot(np.unique(result.brute_grid[i]),
 np.minimum.reduce(result.brute_Jout, axis=red_axis),
 'o', ms=3)
 ax.set_xlabel(r'χ^2')
 ax.set_xticks([])
 if best_vals:
 ax.axvline(best_vals[par1].value, ls='dashed', color='r')

 # parameter vs chi2 profile on the left
 elif j == 0 and i > 0:
 ax = axes[i, j]
 red_axis = tuple([a for a in range(npars) if a != i])
 ax.plot(np.minimum.reduce(result.brute_Jout, axis=red_axis),
 np.unique(result.brute_grid[i]), 'o', ms=3)
 ax.invert_xaxis()
 ax.set_xlabel(varlabels[i])
 if i != npars-1:
 ax.set_xticks([])
 else:
 ax.set_xlabel(r'χ^2')
 if best_vals:
 ax.axhline(best_vals[par1].value, ls='dashed', color='r')

 # contour plots for all combinations of two parameters
 elif j > i:
 ax = axes[j, i+1]
 red_axis = tuple([a for a in range(npars) if a not in (i, j)])
 X, Y = np.meshgrid(np.unique(result.brute_grid[i]),
 np.unique(result.brute_grid[j]))

(continues on next page)
```
lvls1 = np.linspace(result.brute_Jout.min(),
        np.median(result.brute_Jout)/2.0, 7, dtype='int')
lvls2 = np.linspace(np.median(result.brute_Jout)/2.0,
        np.median(result.brute_Jout), 3, dtype='int')
lvls = np.unique(np.concatenate((lvls1, lvls2)))
ax.contourf(X.T, Y.T, np.minimum.reduce(result.brute_Jout, axis=red_axis),
        lvls, norm=LogNorm())
ax.set_yticks([])
if best_vals:
    ax.axvline(best_vals[par1].value, ls='dashed', color='r')
    ax.axhline(best_vals[par2].value, ls='dashed', color='r')
    ax.plot(best_vals[par1].value, best_vals[par2].value, 'rs', ms=3)
    if j != npars-1:
        ax.set_xticks([])
    else:
        ax.set_xlabel(varlabels[i])
    if j - i >= 2:
        axes[i, j].axis('off')

if output is not None:
    plt.savefig(output)

and finally, to generated the figure:

plot_results_brute(result_brute, best_vals=True, varlabels=None)
Total running time of the script: (1 minutes 8.961 seconds)
EXAMPLES FROM THE DOCUMENTATION

Below are all the examples that are part of the lmfit documentation.

14.1 doc_model_savemodel.py

```
<examples/doc_model_savemodel.py>
import numpy as np
from lmfit.model import Model, save_model

def mysine(x, amp, freq, shift):
 return amp * np.sin(x*freq + shift)

sinemodel = Model(mysine)
pars = sinemodel.make_params(amp=1, freq=0.25, shift=0)
save_model(sinemodel, 'sinemodel.sav')
<end examples/doc_model_savemodel.py>
```

Total running time of the script: ( 0 minutes 0.005 seconds)
Out:

```python
[[Model]]
 Model(gaussian)
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 29
 # data points = 101
 # variables = 3
 chi-square = 3.40883599
 reduced chi-square= 0.03478404
 Akaike info crit = -336.263713
 Bayesian info crit= -328.418352
[[Variables]]
 amplitude: 8.88022277 +/- 0.11359552 (1.28%) (init = 5)
 center: 5.65866081 +/- 0.01030506 (0.18%) (init = 5)
 sigma: 0.69765538 +/- 0.01030503 (1.48%) (init = 1)
 fwhm: 1.64285285 +/- 0.02426649 (1.48%) == '2.3548200*sigma'
 height: 5.07800352 +/- 0.06495781 (1.28%) == '0.3989423*amplitude/max(1e-15, ...
 -=sigma)'
[[Correlations]] (unreported correlations are < 0.100)
 C(amplitude, sigma) = 0.577
```
import matplotlib.pyplot as plt
import numpy as np

from lmfit.model import load_modelresult

data = np.loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]

result = load_modelresult('gauss_modelresult.sav')
print(result.fit_report())

plt.plot(x, y, 'bo')
plt.plot(x, result.best_fit, 'r-')
plt.show()
14.3 doc_model_loadmodelresult2.py

Out:

```
[[Model]]
 ((Model(gaussian, prefix='g1_') + Model(gaussian, prefix='g2_')) +
 Model(exponential, prefix='exp_'))
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 46
 # data points = 250
 # variables = 8
 chi-square = 1247.52821
 reduced chi-square = 5.15507524
 Akaike info crit = 417.864631
 Bayesian info crit = 446.036318
[[Variables]]
 exp_amplitude: 99.0183283 +/- 0.53748735 (0.54%) (init = 162.2102)
 exp_decay: 90.9508860 +/- 1.10310509 (1.21%) (init = 93.24905)
 g1_amplitude: 4257.77319 +/- 42.3833645 (1.00%) (init = 2000)
 g1_center: 107.030954 +/- 0.15006786 (0.14%) (init = 105)
 g1_sigma: 16.6725753 +/- 0.16048161 (0.96%) == '2.3548200 *g1_sigma'
 g1_height: 101.880231 +/- 0.59217099 (0.58%) == '0.3989423 *g1_amplitude/
 max(1e-15, g1_sigma)'
```

(continues on next page)
g2_amplitude: 2493.41771 +/- 36.1694731 (1.45%) (init = 2000)
g2_center: 153.270101 +/- 0.19466743 (0.13%) (init = 155)
g2_sigma: 13.8069484 +/- 0.18679415 (1.35%) (init = 15)
g2_fwhm: 32.5128783 +/- 0.43986659 (1.35%) == '2.3548200 * g2_sigma'
g2_height: 72.0455934 +/- 0.61722094 (0.86%) == '0.3989423 * g2_amplitude/
->

[[Correlations]] (unreported correlations are < 0.100)
C(g1_amplitude, g1_sigma) = 0.824
C(g2_amplitude, g2_sigma) = 0.815
C(exp_amplitude, exp_decay) = -0.695
C(g1_sigma, g2_center) = 0.684
C(g1_center, g2_amplitude) = -0.669
C(g1_center, g2_sigma) = -0.652
C(g1_amplitude, g2_center) = 0.648
C(g1_center, g2_center) = 0.621
C(g1_center, g1_sigma) = 0.507
C(exp_decay, g1_amplitude) = -0.507
C(g1_sigma, g2_amplitude) = -0.491
C(g2_center, g2_sigma) = -0.489
C(g1_sigma, g2_sigma) = -0.483
C(g2_amplitude, g2_center) = -0.476
C(exp_decay, g2_amplitude) = -0.427
C(g1_amplitude, g1_center) = 0.418
C(g1_amplitude, g2_sigma) = -0.401
C(g1_amplitude, g2_amplitude) = -0.307
C(exp_amplitude, g2_amplitude) = 0.282
C(exp_decay, g1_sigma) = -0.252
C(exp_decay, g2_sigma) = -0.233
C(exp_amplitude, g2_sigma) = 0.171
C(exp_decay, g2_center) = -0.151
C(exp_amplitude, g1_amplitude) = 0.148
C(exp_decay, g1_amplitude) = 0.105

# <examples/doc_model_loadmodelresult2.py>
import matplotlib.pyplot as plt
import numpy as np

from lmfit.model import load_modelresult

dat = np.loadtxt('NIST_Gauss2.dat')
x = dat[:, 1]
y = dat[:, 0]

result = load_modelresult('nistgauss_modelresult.sav')
print(result.fit_report())

plt.plot(x, y, 'bo')
plt.plot(x, result.best_fit, 'r-')
plt.show()

# <end examples/doc_model_loadmodelresult2.py>

Total running time of the script: ( 0 minutes 0.299 seconds)
## 14.4 doc_model_savemodelresult.py

Out:

```python
[[Model]]
 Model(gaussian)
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 29
 # data points = 101
 # variables = 3
 chi-square = 3.40883599
 reduced chi-square = 0.03478404
 Akaike info crit = -336.263713
 Bayesian info crit= -328.418352
[[Variables]]
 amplitude: 8.88022277 +/- 0.11359552 (1.28%) (init = 5)
 center: 5.65866081 +/- 0.01030506 (0.18%) (init = 5)
 sigma: 0.69765538 +/- 0.01030503 (1.48%) (init = 1)
 fwhm: 1.64285285 +/- 0.02426649 (1.48%) == '2.3548200*sigma'
 height: 5.07800352 +/- 0.06495781 (1.28%) == '0.3989423*amplitude/max(1e-15,sigma)'
[[Correlations]] (unreported correlations are < 0.100)
 C(amplitude, sigma) = 0.577
```

```python
<examples/doc_model_savemodelresult.py>
import numpy as np

from lmfit.model import save_modelresult
from lmfit.models import GaussianModel

data = np.loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]

gmodel = GaussianModel()
result = gmodel.fit(y, x=x, amplitude=5, center=5, sigma=1)

save_modelresult(result, 'gauss_modelresult.sav')
print(result.fit_report())
<end examples/doc_model_savemodelresult.py>
```

**Total running time of the script:** ( 0 minutes 0.063 seconds)
14.5 doc_confidence_basic.py

Out:

```plaintext
[[Variables]]
 a: 0.09943896 +/- 1.9322e-04 (0.19%) (init = 0.1)
 b: 1.98476942 +/- 0.01222678 (0.62%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
 C(a, b) = 0.601
 99.73% 95.45% 68.27% __BEST__ 68.27% 95.45% 99.73%
 a: -0.00059 -0.00039 -0.00019 0.09944 +0.00019 +0.00039 +0.00060
 b: -0.03766 -0.02478 -0.01230 1.98477 +0.01230 +0.02478 +0.03761
```

```python
<examples/doc_confidence_basic.py>
import numpy as np
import lmfit

x = np.linspace(0.3, 10, 100)
np.random.seed(0)
y = 1/(0.1*x) + 2 + 0.1*np.random.randn(x.size)
pars = lmfit.Parameters()
pars.add_many(('a', 0.1), ('b', 1))

def residual(p):
 return 1/(p['a']*x) + p['b'] - y

mini = lmfit.Minimizer(residual, pars)
result = mini.minimize()
print(lmfit.fit_report(result.params))
ci = lmfit.conf_interval(mini, result)
print(lmfit.printfuncs.report_ci(ci))
<end examples/doc_confidence_basic.py>
```

Total running time of the script: ( 0 minutes 0.944 seconds)
14.6 doc_model_loadmodel.py

```
[[Model]]
 Model(mysine)
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 21
 # data points = 101
 # variables = 3
 chi-square = 7.68903767
 reduced chi-square = 0.07845957
 Akaike info crit = -254.107813
 Bayesian info crit = -246.262452
[[Variables]]
 amp: 2.32733714 +/- 0.03950803 (1.70%) (init = 3)
 freq: 0.50098755 +/- 5.7726e-04 (0.12%) (init = 0.52)
 shift: 0.53604521 +/- 0.03383118 (6.31%) (init = 0)
[[Correlations]] (unreported correlations are < 0.100)
 C(freq, shift) = -0.866
```

Out:

![Graph showing fitted sine wave to data points](image-url)
import matplotlib.pyplot as plt
import numpy as np

from lmfit.model import load_model

def mysine(x, amp, freq, shift):
    return amp * np.sin(x*freq + shift)

data = np.loadtxt('sinedata.dat')
x = data[:, 0]
y = data[:, 1]

model = load_model('sinemodel.sav', funcdefs={'mysine': mysine})
params = model.make_params(amp=3, freq=0.52, shift=0)
params['shift'].max = 1
params['shift'].min = -1
params['amp'].min = 0.0

result = model.fit(y, params, x=x)
print(result.fit_report())

plt.plot(x, y, 'bo')
plt.plot(x, result.best_fit, 'r-')
plt.show()
14.7 doc_model_gaussian.py

Out:

```
[[Model]]
 Model(gaussian)

[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 33
 # data points = 101
 # variables = 3
 chi-square = 3.40883599
 reduced chi-square= 0.03478404
 Akaike info crit = -336.263713
 Bayesian info crit= -328.418352

[[Variables]]
 amp: 8.88021830 +/- 0.11359492 (1.28%) (init = 5)
 cen: 5.65866102 +/- 0.01030495 (0.18%) (init = 5)
 wid: 0.69765468 +/- 0.01030495 (1.48%) (init = 1)

[[Correlations]] (unreported correlations are < 0.100)
 C(amp, wid) = 0.577
```
```python
<examples/doc_model_gaussian.py>
import matplotlib.pyplot as plt
from numpy import exp, loadtxt, pi, sqrt
from lmfit import Model

data = loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]

def gaussian(x, amp, cen, wid):
 """1-d gaussian: gaussian(x, amp, cen, wid)""
 return (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2))

gmodel = Model(gaussian)
result = gmodel.fit(y, x=x, amp=5, cen=5, wid=1)

print(result.fit_report())

plt.plot(x, y, 'bo')
plt.plot(x, result.init_fit, 'k--', label='initial fit')
plt.plot(x, result.best_fit, 'r-', label='best fit')
plt.legend(loc='best')
plt.show()
<end examples/doc_model_gaussian.py>
```

Total running time of the script: ( 0 minutes 0.262 seconds)
14.8 doc_model_with_nan_policy.py

Out:

```
[Model]
 Model(gaussian)

[Fit Statistics]
 # fitting method = leastsq
 # function evals = 22
 # data points = 99
 # variables = 3
 chi-square = 3.27990355
 reduced chi-square = 0.03416566
 Akaike info crit = -331.323278
 Bayesian info crit = -323.537918

[Variables]
 amplitude: 8.82064765 +/- 0.11686065 (1.32%) (init = 5)
 center: 5.65906365 +/- 0.01055590 (0.19%) (init = 6)
 sigma: 0.69165290 +/- 0.01060625 (1.53%) (init = 1)
 fwhm: 1.62871808 +/- 0.02497581 (1.53%) == '2.3548200 * sigma'
 height: 5.08771012 +/- 0.06488211 (1.28%) == '0.3989423 * amplitude/max(1e-15, sigma)'

[Correlations] (unreported correlations are < 0.100)
 C(amplitude, sigma) = 0.610
```
```python
<examples/doc_model_with_nan_policy.py>
import matplotlib.pyplot as plt
import numpy as np

from lmfit.models import GaussianModel

data = np.loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]

y[44] = np.nan
y[65] = np.nan

nan_policy = 'raise'
nan_policy = 'propagate'
nan_policy = 'omit'

gmodel = GaussianModel()
result = gmodel.fit(y, x=x, amplitude=5, center=6, sigma=1,
 nan_policy=nan_policy)

print(result.fit_report())

make sure nans are removed for plotting:
x_ = x[np.where(np.isfinite(y))]
y_ = y[np.where(np.isfinite(y))]

plt.plot(x_, y_, 'bo')
plt.plot(x_, result.init_fit, 'k--', label='initial fit')
plt.plot(x_, result.best_fit, 'r-', label='best fit')
plt.legend(loc='best')
plt.show()

<end examples/doc_model_with_nan_policy.py>
```

Total running time of the script: ( 0 minutes 0.298 seconds)
14.9 doc_bUILTINMODELS_STEPMODEL.PY

Out:

[[Model]]
  (Model(step, prefix='step_', form='erf') + Model(linear, prefix='line_'))

[[Fit Statistics]]
  # fitting method = leastsq
  # function evals = 49
  # data points = 201
  # variables = 5
  chi-square = 593.709622
  reduced chi-square = 3.02913072
  Akaike info crit = 227.700173
  Bayesian info crit = 244.216698

[[Variables]]
  line_slope: 1.87164656 +/- 0.09318713 (4.98%) (init = 0)
  line_intercept: 12.0964833 +/- 0.27606235 (2.28%) (init = 11.58574)
  step_amplitude: 112.858376 +/- 0.65392947 (0.58%) (init = 134.7378)
  step_center: 3.13494792 +/- 0.00516615 (0.16%) (init = 2.5)
  step_sigma: 0.67392841 +/- 0.01091168 (1.62%) (init = 1.428571)

[[Correlations]] (unreported correlations are < 0.100)
  C(line_slope, step_amplitude) = -0.879
  C(step_amplitude, step_sigma) = 0.564
  C(line_slope, step_sigma) = -0.457

(continues on next page)
C(line_intercept, step_center) = 0.427
C(line_slope, line_intercept) = -0.309
C(line_slope, step_center) = -0.234
C(line_intercept, step_sigma) = -0.137
C(line_intercept, step_amplitude) = -0.117
C(step_amplitude, step_center) = 0.109

# <examples/doc_builtinmodels_stepmodel.py>
import matplotlib.pyplot as plt
import numpy as np
from lmfit.models import LinearModel, StepModel
x = np.linspace(0, 10, 201)
y = np.ones_like(x)
y[:48] = 0.0
y[48:77] = np.arange(77-48)/(77.0-48)
np.random.seed(0)
y = 110.2 * (y + 9e-3*np.random.randn(x.size)) + 12.0 + 2.22*x
step_mod = StepModel(form='erf', prefix='step_')
line_mod = LinearModel(prefix='line_')
pars = line_mod.make_params(intercept=y.min(), slope=0)
pars += step_mod.guess(y, x=x, center=2.5)
mod = step_mod + line_mod
out = mod.fit(y, pars, x=x)
print(out.fit_report())
plt.plot(x, y, 'b')
plt.plot(x, out.init_fit, 'k--', label='initial fit')
plt.plot(x, out.best_fit, 'r-', label='best fit')
plt.legend(loc='best')
plt.show()
# <end examples/doc_builtinmodels_stepmodel.py>

Total running time of the script: (0 minutes 0.326 seconds)
Out:

```
[[Model]]
 (Model(gaussian) + Model(line))
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 44
 # data points = 101
 # variables = 5
 chi-square = 2.57855517
 reduced chi-square = 0.02685995
 Akaike info crit = -360.457020
 Bayesian info crit = -347.381417
[[Variables]]
 amp: 8.45931062 +/- 0.12414515 (1.47%) (init = 5)
 cen: 5.65547873 +/- 0.00917678 (0.16%) (init = 5)
 wid: 0.67545524 +/- 0.00991686 (1.47%) (init = 1)
 slope: 0.26484404 +/- 0.00574892 (2.17%) (init = 0)
 intercept: -0.96860202 +/- 0.03352202 (3.46%) (init = 1)
[[Correlations]] (unreported correlations are < 0.100)
 C(slope, intercept) = -0.795
 C(amp, wid) = 0.666
 C(amp, intercept) = -0.222
```

(continues on next page)
C(amp, slope) = -0.169
C(cen, slope) = -0.162
C(wid, intercept) = -0.148
C(cen, intercept) = 0.129
C(wid, slope) = -0.113
14.11 doc_model_uncertainty.py

```
[[Model]]
 Model(gaussian)

[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 33
 # data points = 101
 # variables = 3
 chi-square = 3.40883599
 reduced chi-square = 0.03478404
 Akaike info crit = -336.263713
 Bayesian info crit = -328.418352

[[Variables]]
 amp: 8.88021830 +/- 0.11359492 (1.28%) (init = 5)
 cen: 5.65866102 +/- 0.01030495 (0.18%) (init = 5)
 wid: 0.69765468 +/- 0.01030495 (1.48%) (init = 1)

[[Correlations]] (unreported correlations are < 0.100)
 C(amp, wid) = 0.577
```

Out:

![Graph showing initial fit, best fit, and 3-sigma uncertainty band with data points and model]
```python
<examples/doc_model_uncertainty.py>
import matplotlib.pyplot as plt
from numpy import exp, loadtxt, pi, sqrt

from lmfit import Model

data = loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]

def gaussian(x, amp, cen, wid):
 """1-d gaussian: gaussian(x, amp, cen, wid)""
 return (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2))

gmodel = Model(gaussian)
result = gmodel.fit(y, x=x, amp=5, cen=5, wid=1)

print(result.fit_report())

dely = result.eval_uncertainty(sigma=3)

plt.plot(x, y, 'bo')
plt.plot(x, result.init_fit, 'k--', label='initial fit')
plt.plot(x, result.best_fit, 'r-', label='best fit')
plt.fill_between(x, result.best_fit-dely, result.best_fit+dely,
 color='#ABABAB', label=r'3-σ uncertainty band')
plt.legend(loc='best')
plt.show()

<end examples/doc_model_uncertainty.py>
```

Total running time of the script: ( 0 minutes 0.579 seconds)

14.12 doc_model_savemodelresult2.py

Out:

```
[[Model]]
 ((Model(gaussian, prefix='g1_') + Model(gaussian, prefix='g2_')) + Model(exponential, prefix='exp_'))
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 46
 # data points = 250
 # variables = 8
 chi-square = 1247.52821
 reduced chi-square = 5.15507524
 Akaike info crit = 417.864631
 Bayesian info crit = 446.036318
[[Variables]]
 exp_amplitude: 99.0183283 +/- 0.53748735 (0.54%) (init = 162.2102)
 exp_decay: 90.9508860 +/- 1.10310509 (1.21%) (init = 93.24905)
 g1_amplitude: 4257.77319 +/- 42.3833645 (1.00%) (init = 2000)
 g1_center: 107.030954 +/- 0.15006786 (0.14%) (init = 105)
(continues on next page)
```
g1_sigma: 16.6725753 +/- 0.16048161 (0.96%) (init = 15)
g1_fwhm: 39.2609138 +/- 0.37790530 (0.96%) == '2.3548200 *g1_sigma'
g1_height: 101.880231 +/- 0.59217099 (0.58%) == '0.3989423 *g1_amplitude / max(1e-15, g1_sigma)'
g2_amplitude: 2493.41771 +/- 36.1694731 (1.45%) (init = 2000)
g2_center: 153.270101 +/- 0.19466743 (0.13%) (init = 155)
g2_sigma: 13.8069484 +/- 0.18679415 (1.35%) (init = 15)
g2_fwhm: 32.5128783 +/- 0.43986659 (1.35%) == '2.3548200 *g2_sigma'
g2_height: 72.0455934 +/- 0.61722094 (0.86%) == '0.3989423 *g2_amplitude / max(1e-15, g2_sigma)'

[[Correlations]] (unreported correlations are < 0.100)
C(g1_amplitude, g1_sigma) = 0.824
C(g2_amplitude, g2_sigma) = 0.815
C(exp_amplitude, exp_decay) = -0.695
C(g1_sigma, g2_center) = 0.684
C(g1_center, g2_amplitude) = -0.669
C(g1_center, g2_sigma) = -0.652
C(g1_amplitude, g2_center) = 0.648
C(g1_center, g2_center) = 0.621
C(g1_center, g1_sigma) = 0.507
C(exp_decay, g1_amplitude) = -0.507
C(g1_sigma, g2_amplitude) = -0.491
C(g2_center, g2_sigma) = -0.489
C(g1_sigma, g2_sigma) = -0.483
C(g2_amplitude, g2_center) = -0.476
C(exp_decay, g2_amplitude) = -0.427
C(g1_amplitude, g1_center) = 0.418
C(g1_amplitude, g2_sigma) = -0.401
C(g1_amplitude, g2_amplitude) = -0.307
C(exp_amplitude, g2_amplitude) = 0.282
C(exp_decay, g1_sigma) = -0.252
C(exp_decay, g2_sigma) = -0.233
C(exp_amplitude, g2_sigma) = 0.171
C(exp_decay, g2_center) = -0.151
C(exp_amplitude, g1_amplitude) = 0.148
C(exp_decay, g1_center) = 0.105

# <examples/doc_model_savemodelresult2.py>
import numpy as np
from lmfit.model import save_modelresult
from lmfit.models import ExponentialModel, GaussianModel

dat = np.loadtxt('NIST_Gauss2.dat')
x = dat[:, 1]
y = dat[:, 0]

exp_mod = ExponentialModel(prefix='exp_')
exp_p = exp_mod.guess(y, x=x)

gauss1 = GaussianModel(prefix='g1_')
pars.update(gauss1.make_params())
pars['g1_center'].set(value=105, min=75, max=125)
pars['g1_sigma'].set(value=15, min=3)
pars['g1_amplitude'].set(value=2000, min=10)

    gauss2 = GaussianModel(prefix='g2_')
pars.update(gauss2.make_params())
pars['g2_center'].set(value=155, min=125, max=175)
pars['g2_sigma'].set(value=15, min=3)
pars['g2_amplitude'].set(value=2000, min=10)

    mod = gauss1 + gauss2 + exp_mod
    init = mod.eval(pars, x=x)
    result = mod.fit(y, pars, x=x)
    save_modelresult(result, 'nistgauss_modelresult.sav')
    print(result.fit_report())
# <end examples/doc_model_savemodelresult2.py>

Total running time of the script: ( 0 minutes 0.222 seconds)
14.13 doc_model_with_iter_callback.py

Out:

```
ITER -1 ['3.00000', '6.00000', '2.00000', '0.00000', '0.00000', '4.70964', '0.59841']
ITER 0 ['3.00000', '6.00000', '2.00000', '0.00000', '0.00000', '4.70964', '0.59841']
ITER 1 ['3.00000', '6.00000', '2.00000', '0.00000', '0.00000', '4.70964', '0.59841']
ITER 2 ['3.00000', '6.00000', '2.00000', '0.00000', '0.00000', '4.70964', '0.59841']
ITER 3 ['3.00000', '6.00000', '2.00000', '0.00000', '0.00000', '4.70964', '0.59841']
ITER 4 ['3.00000', '6.00000', '2.00000', '0.00000', '0.00000', '4.70964', '0.59841']
ITER 5 ['3.00000', '6.00000', '2.00000', '0.00000', '0.00000', '4.70964', '0.59841']
ITER 6 ['3.00000', '6.00000', '2.00000', '0.00000', '0.00000', '4.70964', '0.59841']
ITER 7 ['27.41810', '24.48443', '6.86407', '-0.20617', '3.22509', '16.16365', '1.59355']
ITER 8 ['27.41810', '24.48443', '6.86407', '-0.20617', '3.22509', '16.16365', '1.59355']
ITER 9 ['27.41810', '24.48443', '6.86407', '-0.20617', '3.22509', '16.16365', '1.59355']
ITER 10 ['27.41810', '24.48443', '6.86407', '-0.20617', '3.22509', '16.16365', '1.59355']
ITER 11 ['27.41810', '24.48443', '6.86407', '-0.20617', '3.22509', '16.16365', '1.59355']
ITER 12 ['27.41810', '24.48443', '6.86407', '-0.20617', '3.22509', '16.16365', '1.59355']
```

(continues on next page)
ITER 13	['6.96502', '104.53101', '17.24485', '0.39526', '3.20217', '40.60853', '0.16113']
ITER 14	['25.52956', '29.38325', '12.08679', '-0.19932', '3.90951', '28.46221', '0.84264']
ITER 15	['25.52956', '29.38325', '12.08679', '-0.19932', '3.90951', '28.46221', '0.84264']
ITER 16	['25.52956', '29.38325', '12.08679', '-0.19932', '3.90951', '28.46221', '0.84264']
ITER 17	['25.52956', '29.38325', '12.08679', '-0.19932', '3.90951', '28.46221', '0.84264']
ITER 18	['25.52956', '29.38325', '12.08679', '-0.19932', '3.90951', '28.46221', '0.84264']
ITER 19	['25.52956', '29.38325', '12.08679', '-0.19932', '3.90951', '28.46221', '0.84264']
ITER 20	['20.91135', '29.80809', '28.98798', '-0.25803', '4.54769', '68.26148', '0.28779']
ITER 21	['20.91135', '29.80809', '28.98798', '-0.25803', '4.54769', '68.26148', '0.28779']
ITER 22	['20.91135', '29.80809', '28.98798', '-0.25803', '4.54769', '68.26148', '0.28779']
ITER 23	['20.91135', '29.80809', '28.98798', '-0.25803', '4.54769', '68.26148', '0.28779']
ITER 24	['20.91135', '29.80809', '28.98798', '-0.25803', '4.54769', '68.26148', '0.28779']
ITER 25	['20.91135', '29.80809', '28.98798', '-0.25803', '4.54769', '68.26148', '0.28779']
ITER 26	['29.69932', '8.72234', '28.44164', '-0.29097', '5.00931', '66.97495', '0.41658']
ITER 27	['29.69932', '8.72234', '28.44164', '-0.29097', '5.00931', '66.97495', '0.41658']
ITER 28	['29.69932', '8.72234', '28.44164', '-0.29097', '5.00931', '66.97495', '0.41658']
ITER 29	['29.69932', '8.72234', '28.44165', '-0.29097', '5.00931', '66.97496', '0.41658']
ITER 30	['29.69932', '8.72234', '28.44165', '-0.29097', '5.00931', '66.97496', '0.41658']
ITER 31	['29.69932', '8.72234', '28.44165', '-0.29097', '5.00931', '66.97496', '0.41658']
ITER 32	['46.89714', '8.78075', '7.31686', '-0.28389', '4.21023', '17.22988', '2.55701']
ITER 33	['46.89714', '8.78075', '7.31686', '-0.28389', '4.21023', '17.22988', '2.55701']
ITER 34	['46.89714', '8.78075', '7.31686', '-0.28389', '4.21023', '17.22988', '2.55701']
ITER 35	['46.89714', '8.78075', '7.31686', '-0.28389', '4.21023', '17.22988', '2.55701']
ITER 36	['46.89714', '8.78075', '7.31686', '-0.28389', '4.21023', '17.22988', '2.55701']
ITER 37	['46.89714', '8.78075', '7.31686', '-0.28389', '4.21023', '17.22988', '2.55701']
ITER 38	['-4.07966', '-5.77276', '1.83398', '0.19891', '-0.40733', '4.31869', '0.88744']
ITER 39	['42.58021', '9.47161', '3.59328', '-0.28184', '3.21567', '8.46154', '4.72744']
ITER 40	['42.58021', '9.47161', '3.59328', '-0.28184', '3.21567', '8.46154', '4.72744']
ITER 41	['42.58021', '9.47161', '3.59328', '-0.28184', '3.21567', '8.46154', '4.72744']
ITER 42 ['42.58021', '9.47161', '3.59328', '-0.28184', '3.21567', '8.46154', '4.72744']
ITER 43 ['42.58021', '9.47161', '3.59328', '-0.28184', '3.21567', '8.46154', '4.72744']
ITER 44 ['42.58021', '9.47161', '3.59328', '-0.28184', '3.21567', '8.46154', '4.72744']
ITER 45 ['30.01832', '6.80220', '2.99461', '-0.12851', '2.34682', '7.05177', '3.99904']
ITER 46 ['30.01832', '6.80220', '2.99461', '-0.12851', '2.34682', '7.05177', '3.99904']
ITER 47 ['30.01832', '6.80220', '2.99461', '-0.12851', '2.34682', '7.05177', '3.99904']
ITER 48 ['30.01832', '6.80220', '2.99461', '-0.12851', '2.34682', '7.05177', '3.99904']
ITER 49 ['30.01832', '6.80220', '2.99461', '-0.12851', '2.34682', '7.05177', '3.99904']
ITER 50 ['30.01832', '6.80220', '2.99461', '-0.12851', '2.34682', '7.05177', '3.99904']
ITER 51 ['17.69507', '8.46657', '1.01659', '-0.23045', '3.83669', '2.39389', '6.94409']
ITER 52 ['17.69507', '8.46657', '1.01659', '-0.23045', '3.83669', '2.39389', '6.94409']
ITER 53 ['17.69507', '8.46657', '1.01659', '-0.23045', '3.83669', '2.39389', '6.94409']
ITER 54 ['17.69507', '8.46657', '1.01659', '-0.23045', '3.83669', '2.39389', '6.94409']
ITER 55 ['17.69507', '8.46657', '1.01659', '-0.23045', '3.83669', '2.39389', '6.94409']
ITER 56 ['17.69507', '8.46657', '1.01659', '-0.23045', '3.83669', '2.39389', '6.94409']
ITER 57 ['22.61349', '7.75137', '1.45137', '-0.21630', '3.56563', '3.41771', '6.21585']
ITER 58 ['22.61349', '7.75137', '1.45137', '-0.21630', '3.56563', '3.41771', '6.21585']
ITER 59 ['22.61349', '7.75137', '1.45137', '-0.21630', '3.56563', '3.41771', '6.21585']
ITER 60 ['22.61349', '7.75137', '1.45137', '-0.21630', '3.56563', '3.41771', '6.21585']
ITER 61 ['22.61349', '7.75137', '1.45137', '-0.21630', '3.56563', '3.41771', '6.21585']
ITER 62 ['22.61349', '7.75137', '1.45137', '-0.21630', '3.56563', '3.41771', '6.21585']
ITER 63 ['24.13916', '7.62179', '1.18261', '-0.20160', '3.34246', '2.78482', '8.14315']
ITER 64 ['24.13916', '7.62179', '1.18261', '-0.20160', '3.34246', '2.78482', '8.14315']
ITER 65 ['24.13916', '7.62179', '1.18261', '-0.20160', '3.34246', '2.78482', '8.14315']
ITER 66 ['24.13916', '7.62179', '1.18261', '-0.20160', '3.34246', '2.78482', '8.14315']
ITER 67 ['24.13916', '7.62179', '1.18261', '-0.20160', '3.34246', '2.78482', '8.14315']
ITER 68 ['24.13916', '7.62179', '1.18261', '-0.20160', '3.34246', '2.78482', '8.14315']
ITER 69 ['24.40272', '7.65357', '1.22777', '-0.20151', '3.32847', '2.89118', '7.92923']
ITER 70 ['24.40272', '7.65357', '1.22777', '-0.20151', '3.32847', '2.89118', '7.92923']
ITER 71 [24.40272, '7.65357', '1.22777', '-0.20151', '3.32847', '2.89118', '7.92923']
ITER 72 [24.40272, '7.65357', '1.22777', '-0.20151', '3.32847', '2.89118', '7.92923']
ITER 73 [24.40272, '7.65357', '1.22777', '-0.20151', '3.32847', '2.89118', '7.92923']
ITER 74 [24.40272, '7.65357', '1.22777', '-0.20151', '3.32847', '2.89118', '7.92923']
ITER 75 [24.43754, '7.65514', '1.22977', '-0.20146', '3.32621', '2.89589', '7.92763']
ITER 76 [24.43754, '7.65514', '1.22977', '-0.20146', '3.32621', '2.89589', '7.92763']
ITER 77 [24.43754, '7.65514', '1.22977', '-0.20146', '3.32621', '2.89589', '7.92763']
ITER 78 [24.43754, '7.65514', '1.22977', '-0.20146', '3.32621', '2.89589', '7.92763']
ITER 79 [24.43754, '7.65514', '1.22977', '-0.20146', '3.32621', '2.89589', '7.92763']
ITER 80 [24.43754, '7.65514', '1.22977', '-0.20146', '3.32621', '2.89589', '7.92763']
ITER 81 [24.43823, '7.65514', '1.22982', '-0.20146', '3.32615', '2.89600', '7.92754']
ITER 81 [24.43823, '7.65514', '1.22982', '-0.20146', '3.32615', '2.89600', '7.92754']

Nfev = 81

[[Model]]
(Model(gaussian, prefix='peak_') + Model(linear, prefix='bkg_'))

[[Fit Statistics]]
# fitting method = leastsq
# function evals = 81
# data points = 401
# variables = 5
chi-square = 20.7309419
reduced chi-square = 0.05235086
Akaike info crit = -1177.89596
Bayesian info crit = -1157.92615

[[Variables]]
peak_amplitude: 24.4382287 +/- 0.16625391 (0.68%) (init = 3)
peak_center: 7.65513988 +/- 0.00768465 (0.10%) (init = 6)
peak_sigma: 1.22981974 +/- 0.00834506 (0.68%) (init = 2)
bkg_slope: -0.20145591 +/- 0.00207980 (1.03%) (init = 0)
bkg_intercept: 3.32614932 +/- 0.02701936 (0.81%) (init = 0)
peak_fwhm: 2.89600411 +/- 0.01965112 (0.68%) == '2.3548200 * peak_sigma'
peak_height: 7.92753837 +/- 0.04386563 (0.55%) == '0.3989423 * peak_amplitude / max(1e-15, peak_sigma)'

[[Correlations]] (unreported correlations are < 0.100)
C(bkg_slope, bkg_intercept) = -0.857
C(peak_amplitude, peak_sigma) = 0.668
C(peak_amplitude, bkg_intercept) = -0.526
C(peak_sigma, bkg_intercept) = -0.352
C(peak_amplitude, bkg_slope) = 0.285
C(peak_sigma, bkg_slope) = 0.190
C(peak_center, bkg_slope) = -0.146
C(peak_center, bkg_intercept) = 0.125
```python
<examples/doc_with_itercb.py>
import matplotlib.pyplot as plt
from numpy import linspace, random

from lmfit.lineshapes import gaussian
from lmfit.models import GaussianModel, LinearModel

def per_iteration(pars, iteration, resid, *args, **kws):
 print(" ITER ", iteration, ["%.5f" % p for p in pars.values()])

x = linspace(0., 20, 401)
y = gaussian(x, amplitude=24.56, center=7.6543, sigma=1.23)
y = y - .20*x + 3.333 + random.normal(scale=0.23, size=x.size)

mod = GaussianModel(prefix='peak_') + LinearModel(prefix='bkg_')

pars = mod.make_params()
pars['peak_amplitude'].value = 3.0
pars['peak_center'].value = 6.0
pars['peak_sigma'].value = 2.0
pars['bkg_intercept'].value = 0.0
pars['bkg_slope'].value = 0.0

out = mod.fit(y, pars, x=x, iter_cb=per_iteration)

plt.plot(x, y, 'b--')

print('Nfev = ', out.nfev)
print(out.fit_report())

plt.plot(x, out.best_fit, 'k-', label='best fit')
plt.legend(loc='best')
plt.show()
<end examples/doc_with_itercb.py>

Total running time of the script: (0 minutes 0.500 seconds)
14.14 doc_builtinmodels_nistgauss2.py

Out:

```
[[Model]]
  (Model(gaussian, prefix='g1_') + Model(gaussian, prefix='g2_')) +
  Model(exponential, prefix='exp_'))
[[Fit Statistics]]
  # fitting method = leastsq
  # function evals = 37
  # data points = 250
  # variables = 8
  chi-square = 1247.52821
  reduced chi-square = 5.15507524
  Akaike info crit = 417.864631
  Bayesian info crit = 446.036318
[[Variables]]
  exp_amplitude: 99.0183270 +/- 0.53748905 (0.54%) (init = 94.53724)
  exp_decay: 90.9508890 +/- 1.10310483 (1.21%) (init = 111.1985)
  g1_amplitude: 4257.77343 +/- 42.3836433 (1.00%) (init = 3189.648)
  g1_center: 107.030956 +/- 0.15006873 (0.14%) (init = 106.5)
  g1_sigma: 16.6725765 +/- 0.16048227 (0.96%) == '2.3548200 *g1_sigma'
  g1_fwhm: 39.2609166 +/- 0.37790686 (0.96%) == '2.3548200 *g1_sigma'
  g1_height: 101.880230 +/- 0.59217233 (0.58%) == '0.3989423 *g1_amplitude/
  max(1e-15, g1_sigma)'
```

(continues on next page)
g2_amplitude: 2493.41733 +/- 36.1696906 (1.45%) (init = 2818.337)
g2_center: 153.270101 +/- 0.19466905 (0.13%) (init = 150)
g2_sigma: 13.8069461 +/- 0.18679534 (1.35%) (init = 15)
g2_fwhm: 32.5128728 +/- 0.43986939 (1.35%) == '2.3548200 * g2_sigma'
g2_height: 72.0455948 +/- 0.61722328 (0.86%) == '0.3989423 * g2_amplitude/

[max(1e-15, g2_sigma)]

[[Correlations]] (unreported correlations are < 0.500)
C(g1_amplitude, g1_sigma) = 0.824
C(g2_amplitude, g2_sigma) = 0.815
C(exp_amplitude, exp_decay) = -0.695
C(g1_sigma, g2_center) = 0.684
C(g1_center, g2_amplitude) = -0.669
C(g1_center, g2_sigma) = -0.652
C(g1_amplitude, g2_center) = 0.648
C(g1_center, g2_center) = 0.621
C(g1_center, g1_sigma) = 0.507
C(exp_decay, g1_amplitude) = -0.507

<examples/doc_nistgauss2.py>
import matplotlib.pyplot as plt
import numpy as np
from lmfit.models import ExponentialModel, GaussianModel

dat = np.loadtxt('NIST_Gauss2.dat')
x = dat[:, 1]
y = dat[:, 0]

exp_mod = ExponentialModel(prefix='exp_')
gauss1 = GaussianModel(prefix='g1_')
gauss2 = GaussianModel(prefix='g2_')

def index_of(arrval, value):
 """return index of array *at or below* value """
 if value < min(arrval):
 return 0
 return max(np.where(arrval <= value)[0])

ix1 = index_of(x, 75)
ix2 = index_of(x, 135)
ix3 = index_of(x, 175)

pars1 = exp_mod.guess(y[:ix1], x=x[:ix1])
pars2 = gauss1.guess(y[ix1:ix2], x=x[ix1:ix2])
pars3 = gauss2.guess(y[ix2:ix3], x=x[ix2:ix3])

pars = pars1 + pars2 + pars3
mod = gauss1 + gauss2 + exp_mod

(continues on next page)
out = mod.fit(y, pars, x=x)
print(out.fit_report(min_correl=0.5))
plt.plot(x, y, 'b')
plt.plot(x, out.init_fit, 'k--', label='initial fit')
plt.plot(x, out.best_fit, 'r-', label='best fit')
plt.legend(loc='best')
plt.show()

Out:

[[Fit Statistics]]
fitting method = leastsq
function evals = 83
data points = 1001
variables = 4
chi-square = 498.811759
reduced chi-square = 0.50031270
Akaike info crit = -689.222517
Bayesian info crit = -669.587497
[[Variables]]
amp: 13.9121945 +/- 0.14120288 (1.01%) (init = 13)
period: 5.48507045 +/- 0.02666492 (0.49%) (init = 2)
shift: 0.16203677 +/- 0.01405661 (8.67%) (init = 0)
decay: 0.03264538 +/- 3.8014e-04 (1.16%) (init = 0.02)
[[Correlations]] (unreported correlations are < 0.100)
C(period, shift) = 0.797
C(amp, decay) = 0.582
C(amp, shift) = -0.297
C(period, decay) = -0.182
C(shift, decay) = -0.150

<examples/doc_fitting_withreport.py>
from numpy import exp, linspace, pi, random, sign, sin
from lmfit import Parameters, fit_report, minimize

p_true = Parameters()
p_true.add('amp', value=14.0)
p_true.add('period', value=5.46)
p_true.add('shift', value=0.123)
p_true.add('decay', value=0.032)
```python
def residual(pars, x, data=None):
    """Model a decaying sine wave and subtract data.""
    vals = pars.valuesdict()
    amp = vals['amp']
    per = vals['period']
    shift = vals['shift']
    decay = vals['decay']

    if abs(shift) > pi/2:
        shift = shift - sign(shift) * pi
    model = amp * sin(shift + x/per) * exp(-x*x*decay*decay)
    if data is None:
        return model
    return model - data
```

```python
random.seed(0)
x = linspace(0.0, 250., 1001)
noise = random.normal(scale=0.7215, size=x.size)
data = residual(p_true, x) + noise
fit_params = Parameters()
fit_params.add('amp', value=13.0)
fit_params.add('period', value=2)
fit_params.add('shift', value=0.0)
fit_params.add('decay', value=0.02)
out = minimize(residual, fit_params, args=(x,), kws={'data': data})
print(fit_report(out))
# <end examples/doc_fitting_withreport.py>
```

Total running time of the script: (0 minutes 0.029 seconds)
14.16 doc_parameters_valuesdict.py

Out:

```python
[[Fit Statistics]]
# fitting method   = leastsq
# function evals   = 63
# data points      = 301
# variables        = 4
chi-square         = 10.9764657
reduced chi-square = 0.03695780
Akaike info crit   = -988.718387
Bayesian info crit = -973.889945

[[Variables]]
amp: 4.96174550 +/- 0.03830181 (0.77%) (init = 10)
decay: 0.02571887 +/- 4.5357e-04 (1.76%) (init = 0.1)
shift: -0.09714733 +/- 0.00991436 (10.21%) (init = 0)
omega: 1.99750219 +/- 0.00321063 (0.16%) (init = 3)

[[Correlations]] (unreported correlations are < 0.100)
C(shift, omega) = -0.785
C(amp, decay)   = 0.584
C(amp, shift)   = -0.120
```
import numpy as np

from lmfit import Minimizer, Parameters, report_fit

create data to be fitted
x = np.linspace(0, 15, 301)
data = (5.0 * np.sin(2.0*x - 0.1) * np.exp(-x*x*0.025) +
 np.random.normal(size=x.size, scale=0.2))

define objective function: returns the array to be minimized
def fcn2min(params, x, data):
 """Model a decaying sine wave and subtract data."""
 v = params.valuesdict()
 model = v['amp'] * np.sin(x * v['omega'] + v['shift']) * np.exp(-x*x*v['decay'])
 return model - data

create a set of Parameters
params = Parameters()
params.add('amp', value=10, min=0)
params.add('decay', value=0.1)
params.add('shift', value=0.0, min=-np.pi/2., max=np.pi/2)
params.add('omega', value=3.0)

do fit, here with the default leastsq algorithm
minner = Minimizer(fcn2min, params, fcn_args=(x, data))
result = minner.minimize()

calculate final result
final = data + result.residual

write error report
report_fit(result)

try to plot results
try:
 import matplotlib.pyplot as plt
 plt.plot(x, data, 'k+')
 plt.plot(x, final, 'r')
 plt.show()
except ImportError:
 pass

<end of examples/doc_parameters_valuesdict.py>

Total running time of the script: (0 minutes 0.303 seconds)
14.17 doc_parameters_basic.py

Out:

[[Fit Statistics]]
fitting method = leastsq
function evals = 64
data points = 301
variables = 4
chi-square = 11.0484618
reduced chi-square = 0.03720021
Akaike info crit = -986.750534
Bayesian info crit = -971.922093
[[Variables]]
amp: 4.96078856 +/- 0.03791272 (0.76%) (init = 10)
decay: 0.02437789 +/- 4.2572e-04 (1.75%) (init = 0.1)
shift: -0.10363212 +/- 0.00981677 (9.47%) (init = 0)
omega: 2.00019266 +/- 0.00309578 (0.15%) (init = 3)
[[Correlations]] (unreported correlations are < 0.100)
C(shift, omega) = -0.785
C(amp, decay) = 0.584
C(amp, shift) = -0.117
Non-Linear Least-Squares Minimization and Curve-Fitting for Python, Release 1.0.2

<examples/doc_parameters_basic.py>
import numpy as np

from lmfit import Minimizer, Parameters, report_fit

create data to be fitted
x = np.linspace(0, 15, 301)
data = (5.0 * np.sin(2.0*x - 0.1) * np.exp(-x*x*0.025) +
 np.random.normal(size=x.size, scale=0.2))

define objective function: returns the array to be minimized
def fcn2min(params, x, data):
 """Model a decaying sine wave and subtract data."""
 amp = params['amp']
 shift = params['shift']
 omega = params['omega']
 decay = params['decay']
 model = amp * np.sin(x*omega + shift) * np.exp(-x*x*decay)
 return model - data

create a set of Parameters
params = Parameters()
params.add('amp', value=10, min=0)
params.add('decay', value=0.1)
params.add('shift', value=0.0, min=-np.pi/2., max=np.pi/2.)
params.add('omega', value=3.0)

do fit, here with the default leastsq algorithm
minner = Minimizer(fcn2min, params, fcn_args=(x, data))
result = minner.minimize()

calculate final result
final = data + result.residual

write error report
report_fit(result)

try to plot results
try:
 import matplotlib.pyplot as plt
 plt.plot(x, data, 'k+')
 plt.plot(x, final, 'r')
 plt.show()
except ImportError:
 pass

<end of examples/doc_parameters_basic.py>

Total running time of the script: (0 minutes 0.233 seconds)
14.18 doc_builtinmodels_peakmodels.py

![Gaussian Model Graph]

-
Out:

```
[[Model]]
  Model(gaussian)
[[Fit Statistics]]
  # fitting method = leastsq
  # function evals = 25
  # data points = 401
  # variables = 3
  chi-square = 29.9943157
  reduced chi-square = 0.07536260
```
Akaike info crit = -1033.77437
Bayesian info crit = -1021.79248

[[Variables]]
amplitude: 30.3135620 +/- 0.15712686 (0.52%) (init = 43.62238)
center: 9.24277047 +/- 0.00737496 (0.08%) (init = 9.25)
sigma: 1.23218359 +/- 0.00737496 (0.60%) (init = 1.35)
fwhm: 2.90157056 +/- 0.01736670 (0.60%) == '2.3548200*sigma'
height: 9.81457817 +/- 0.05087283 (0.52%) == '0.3989423*amplitude/max(1e-15,\(\rightarrow\)sigma)'

[[Correlations]] (unreported correlations are < 0.250)
C(amplitude, sigma) = 0.577

[[Model]]
Model(lorentzian)

[[Fit Statistics]]
fitting method = leastsq
function evals = 21
data points = 401
variables = 3
chi-square = 53.7535387
reduced chi-square = 0.13505914
Akaike info crit = -799.830322
Bayesian info crit = -787.848438

[[Variables]]
amplitude: 38.9727645 +/- 0.31386183 (0.81%) (init = 54.52798)
center: 9.24438944 +/- 0.00927619 (0.10%) (init = 9.25)
sigma: 1.15483925 +/- 0.01315659 (1.14%) (init = 1.35)
fwhm: 2.30967850 +/- 0.02631318 (1.14%) == '2.0000000 *sigma'
height: 10.7421156 +/- 0.08633945 (0.80%) == '0.3183099 *amplitude/max(1e-15,\(\rightarrow\)sigma)'

[[Correlations]] (unreported correlations are < 0.250)
C(amplitude, sigma) = 0.709

[[Model]]
Model(voigt)

[[Fit Statistics]]
fitting method = leastsq
function evals = 21
data points = 401
variables = 3
chi-square = 14.5448627
reduced chi-square = 0.03654488
Akaike info crit = -1324.00615
Bayesian info crit = -1312.02427

[[Variables]]
amplitude: 35.7554146 +/- 0.13861321 (0.39%) (init = 65.43358)
center: 9.24411150 +/- 0.00505482 (0.05%) (init = 9.25)
sigma: 0.73015627 +/- 0.00368460 (0.50%) (init = 0.8775)
gamma: 0.73015627 +/- 0.00368460 (0.50%) == 'sigma'
fwhm: 2.62950494 +/- 0.00806900 (0.31%) == '1.0692 *gamma+sqrt(0.8664*gamma**2+5.545083*sigma**2)'
height: 10.2203969 +/- 0.03009415 (0.29%) == '(amplitude/(max(1e-15,\(\rightarrow\)sigma*sqrt(2*pi))))*wofz((1j*gamma)/(max(1e-15, sigma*sqrt(2))).real'

[[Correlations]] (unreported correlations are < 0.250)
C(amplitude, sigma) = 0.651
import matplotlib.pyplot as plt
from numpy import loadtxt
from lmfit.models import GaussianModel, LorentzianModel, VoigtModel

data = loadtxt('test_peak.dat')
x = data[:, 0]
y = data[:, 1]

Gaussian model
mod = GaussianModel()
pars = mod.guess(y, x=x)
out = mod.fit(y, pars, x=x)
print(out.fit_report(min_correl=0.25))
plt.plot(x, y, 'b-')
plt.plot(x, out.best_fit, 'r-', label='Gaussian Model')
plt.legend(loc='best')
plt.show()

Lorentzian model
mod = LorentzianModel()
pars = mod.guess(y, x=x)
out = mod.fit(y, pars, x=x)
print(out.fit_report(min_correl=0.25))
plt.figure()
plt.plot(x, y, 'b-')
plt.plot(x, out.best_fit, 'r-', label='Lorentzian Model')
plt.legend(loc='best')
plt.show()

Voigt model
mod = VoigtModel()
pars = mod.guess(y, x=x)
out = mod.fit(y, pars, x=x)
print(out.fit_report(min_correl=0.25))
fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))
axes[0].plot(x, y, 'b-')
axes[0].plot(x, out.best_fit, 'r-', label='Voigt Model\ngamma constrained')
axes[0].legend(loc='best')

free gamma parameter
pars['gamma'].set(value=0.7, vary=True, expr='')
out_gamma = mod.fit(y, pars, x=x)
axes[1].plot(x, y, 'b-')
axes[1].plot(x, out_gamma.best_fit, 'r-', label='Voigt Model\ngamma unconstrained')
axes[1].legend(loc='best')

(continues on next page)
plt.show()

Total running time of the script: (0 minutes 1.150 seconds)

14.19 doc_builtinmodels_nistgauss.py

Out:

```
[[Model]]
  ((Model(gaussian, prefix='g1_') + Model(gaussian, prefix='g2_')) +
  Model(exponential, prefix='exp_'))
[[Fit Statistics]]
  # fitting method       = leastsq
  # function evals       = 46
  # data points          = 250
  # variables            = 8
  chi-square             = 1247.52821
  reduced chi-square     = 5.15507524
  Akaike info crit       = 417.864631
  Bayesian info crit     = 446.036318
[[Variables]]
  exp_amplitude: 99.0183283 +/- 0.53748735 (0.54%) (init = 162.2102)
  exp_decay: 90.9508860 +/- 1.10310509 (1.21%) (init = 93.24905)
  g1_amplitude: 4257.77319 +/- 42.3833645 (1.00%) (init = 2000)
  g1_center: 107.030954 +/- 0.15006786 (0.14%) (init = 105)
  g1_sigma: 16.6725753 +/- 0.16048161 (0.96%) (init = 15)
  g1_fwhm: 39.2609138 +/- 0.37790530 (0.96%) == '2.3548200 *g1_sigma'
  g1_height: 101.880231 +/- 0.59217099 (0.58%) == '0.3989423 *g1_amplitude/'
  g2_amplitude: 2493.41771 +/- 36.1694731 (1.45%) (init = 2000)
  g2_center: 153.270101 +/- 0.19466743 (0.13%) (init = 155)
  g2_sigma: 13.8069484 +/- 0.18679415 (1.35%) (init = 15)
  g2_fwhm: 32.5128783 +/- 0.43986659 (1.35%) == '2.3548200 *g2_sigma'
  g2_height: 72.0455934 +/- 0.61722094 (0.86%) == '0.3989423 *g2_amplitude/'
```

(continues on next page)
[[Correlations] (unreported correlations are < 0.500)

C(g1_amplitude, g1_sigma) = 0.824
C(g2_amplitude, g2_sigma) = 0.815
C(exp_amplitude, exp_decay) = -0.695
C(g1_sigma, g2_center) = 0.684
C(g1_center, g2_amplitude) = -0.669
C(g1_center, g2_sigma) = -0.652
C(g1_amplitude, g2_center) = 0.648
C(g1_center, g2_center) = 0.621
C(g1_center, g1_sigma) = 0.507
C(exp_decay, g1_amplitude) = -0.507

<examples/doc_builtinmodels_nistgauss.py>
import matplotlib.pyplot as plt
import numpy as np
from lmfit.models import ExponentialModel, GaussianModel

dat = np.loadtxt('NIST_Gauss2.dat')
x = dat[:, 1]
y = dat[:, 0]

exp_mod = ExponentialModel(prefix='exp_')
pars = exp_mod.guess(y, x=x)

gauss1 = GaussianModel(prefix='g1_')
pars.update(gauss1.make_params())
pars['g1_center'].set(value=105, min=75, max=125)
pars['g1_sigma'].set(value=15, min=3)
pars['g1_amplitude'].set(value=2000, min=10)

gauss2 = GaussianModel(prefix='g2_')
pars.update(gauss2.make_params())
pars['g2_center'].set(value=155, min=125, max=175)
pars['g2_sigma'].set(value=15, min=3)
pars['g2_amplitude'].set(value=2000, min=10)

mod = gauss1 + gauss2 + exp_mod

init = mod.eval(pars, x=x)
out = mod.fit(y, pars, x=x)

print(out.fit_report(min_correl=0.5))

fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))
axes[0].plot(x, y, 'b')
axes[0].plot(x, init, 'k--', label='initial fit')
axes[0].plot(x, out.best_fit, 'r-', label='best fit')
axes[0].legend(loc='best')
```python
comps = out.eval_components(x=x)
axes[1].plot(x, y, 'b')
axes[1].plot(x, comps['g1_'], 'g--', label='Gaussian component 1')
axes[1].plot(x, comps['g2_'], 'm--', label='Gaussian component 2')
axes[1].plot(x, comps['exp_'], 'k--', label='Exponential component')
axes[1].legend(loc='best')
plt.show()
```

Total running time of the script: (0 minutes 0.649 seconds)

14.20 doc_model_composite.py

![Graph showing composite model fitting](image_url)

Out:

```
[[Model]]
 (Model(jump) <function convolve at 0x1243149d0> Model(gaussian))
[[Fit Statistics]]
 # fitting method = leastsq
 # function evals = 25
 # data points = 201
 # variables = 3
 chi-square = 24.7562335
 reduced chi-square = 0.12503148
 Akaike info crit = -414.939746
 Bayesian info crit = -405.029832

[[Variables]]
 mid: 5 (fixed)
 amplitude: 0.62508459 +/- 0.00189732 (0.30%) (init = 1)
 center: 4.50853671 +/- 0.00973231 (0.22%) (init = 3.5)
 sigma: 0.59576118 +/- 0.01348582 (2.26%) (init = 1.5)

[[Correlations]] (unreported correlations are < 0.100)
 C(amplitude, center) = 0.329
 C(amplitude, sigma) = 0.268
```
import matplotlib.pyplot as plt
import numpy as np

from lmfit import CompositeModel, Model
from lmfit.lineshapes import gaussian, step

create data from broadened step
x = np.linspace(0, 10, 201)
y = step(x, amplitude=12.5, center=4.5, sigma=0.88, form='erf')
np.random.seed(0)
y = y + np.random.normal(scale=0.35, size=x.size)

def jump(x, mid):
 """Heaviside step function.""
 o = np.zeros(x.size)
 imid = max(np.where(x <= mid)[0])
o[imid:] = 1.0
 return o

def convolve(arr, kernel):
 """Simple convolution of two arrays.""
 npts = min(arr.size, kernel.size)
 pad = np.ones(npts)
tmp = np.concatenate((pad*arr[0], arr, pad*arr[-1]))
out = np.convolve(tmp, kernel, mode='valid')
noff = int((len(out) - npts) / 2)
 return out[noff:noff+npts]

create Composite Model using the custom convolution operator
mod = CompositeModel(Model(jump), Model(gaussian), convolve)
pars = mod.make_params(amplitude=1, center=3.5, sigma=1.5, mid=5.0)

'mid' and 'center' should be completely correlated, and 'mid' is
used as an integer index, so a very poor fit variable:
pars['mid'].vary = False

fit this model to data array y
result = mod.fit(y, params=pars, x=x)

print(result.fit_report())

generate components
combs = result.eval_components(x=x)

plot results
fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))

axes[0].plot(x, y, 'bo')
axes[0].plot(x, result.init_fit, 'k--', label='initial fit')
axes[0].plot(x, result.best_fit, 'r-', label='best fit')
axes[0].legend(loc='best')

axes[1].plot(x, y, 'bo')
axes[1].plot(x, 10*comps['jump'], 'k--', label='Jump component')
axes[1].plot(x, 10*comps['gaussian'], 'r-', label='Gaussian component')
axes[1].legend(loc='best')

plt.show()
\"<end examples/doc_model_composite.py>\"

Total running time of the script: 0 minutes 0.497 seconds

14.21 doc_confidence_advanced.py
Non-Linear Least-Squares Minimization and Curve-Fitting for Python, Release 1.0.2

Out:

```
[[Variables]]
  a1: 2.98622120 +/- 0.14867187 (4.98%) (init = 2.986237)
  a2: -4.33526327 +/- 0.11527506 (2.66%) (init = -4.335256)
  t1: 1.30994233 +/- 0.13121177 (10.02%) (init = 1.309932)
  t2: 11.8240351 +/- 0.46316470 (3.92%) (init = 11.82408)
[[Correlations]] (unreported correlations are < 0.500)
  C(a2, t2) = 0.987
  C(a2, t1) = -0.925
  C(t1, t2) = -0.881
  C(a1, t1) = -0.599
  95.45% 68.27% _BEST_ 68.27% 95.45%
  a1: -0.27286 -0.14165 2.98622 +0.16353 +0.36343
  a2: -0.30444 -0.13219 -4.33526 +0.10688 +0.19683
  t1: -0.23392 -0.12494 1.30994 +0.14660 +0.32369
  t2: -1.01943 -0.48820 11.82404 +0.46041 +0.90441
```

<examples/doc_confidence_advanced.py>

```python
import matplotlib.pyplot as plt
import numpy as np
(continues on next page)
```

Chapter 14. Examples from the documentation

262
import lmfit

x = np.linspace(1, 10, 250)
np.random.seed(0)
y = 3.0*np.exp(-x/2) - 5.0*np.exp(-(x-0.1)/10.) + 0.1*np.random.randn(x.size)

p = lmfit.Parameters()
p.add_many(('a1', 4.), ('a2', 4.), ('t1', 3.), ('t2', 3.))

def residual(p):
 return p['a1']*np.exp(-x/p['t1']) + p['a2']*np.exp(-(x-0.1)/p['t2']) - y

create Minimizer
mini = lmfit.Minimizer(residual, p, nan_policy='propagate')

first solve with Nelder-Mead algorithm
out1 = mini.minimize(method='Nelder')

then solve with Levenberg-Marquardt using the
Nelder-Mead solution as a starting point
out2 = mini.minimize(method='leastsq', params=out1.params)

lmfit.report_fit(out2.params, min_correl=0.5)

ci, trace = lmfit.conf_interval(mini, out2, sigmas=[1, 2], trace=True)
lmfit.printfuncs.report_ci(ci)

plot data and best fit
plt.figure()
plt.plot(x, y, 'b')
plt.plot(x, residual(out2.params) + y, 'r-')

plot confidence intervals (a1 vs t2 and a2 vs t2)
fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))

cx, cy, grid = lmfit.conf_interval2d(mini, out2, 'a1', 't2', 30, 30)
ctp = axes[0].contourf(cx, cy, grid, np.linspace(0, 1, 11))
fig.colorbar(ctp, ax=axes[0])
axes[0].set_xlabel('a1')
axes[0].set_ylabel('t2')

cx, cy, grid = lmfit.conf_interval2d(mini, out2, 'a2', 't2', 30, 30)
ctp = axes[1].contourf(cx, cy, grid, np.linspace(0, 1, 11))
fig.colorbar(ctp, ax=axes[1])
axes[1].set_xlabel('a2')
axes[1].set_ylabel('t2')

plot dependence between two parameters
fig, axes = plt.subplots(2, figsize=(12.8, 4.8))

cx1, cy1, prob = trace['a1']['a1'], trace['a1']['t2'], trace['a1']['prob']
cx2, cy2, prob2 = trace['t2']['t2'], trace['t2']['a1'], trace['t2']['prob']

axes[0].scatter(cx1, cy1, c=prob, s=30)
axes[0].set_xlabel('a1')
axes[0].set_ylabel('t2')

(continues on next page)
axes[1].scatter(cx2, cy2, c=prob2, s=30)
axes[1].set_xlabel('t2')
axes[1].set_ylabel('a1')

plt.show()
<end examples/doc_confidence_advanced.py>

Total running time of the script: 0 minutes 12.095 seconds

14.22 doc_fitting_emcee.py
Out:

```
[[Variables]]
a1: 2.9862369 +/- 0.15010519 (5.03%) (init = 4)
a2: -4.33525597 +/- 0.11765824 (2.71%) (init = 4)
t1: 1.30993186 +/- 0.13449656 (10.27%) (init = 3)
t2: 11.8240752 +/- 0.47172610 (3.99%) (init = 3)

[[Correlations]] (unreported correlations are < 0.500)
C(a2, t2) = 0.988
C(a2, t1) = -0.928
C(t1, t2) = -0.885
C(a1, t1) = -0.609
```

The chain is shorter than 50 times the integrated autocorrelation time for 5 parameter(s). Use this estimate with caution and run a longer chain!

\[N/50 = 20; \]
\[\tau: [42.15955322 47.347426 48.71211873 46.7985718 40.89881208] \]

```
median of posterior probability distribution

```

```
[[Variables]]
a1: 2.98945718 +/- 0.14033921 (4.69%) (init = 2.986237)
a2: -4.34687243 +/- 0.12131092 (2.79%) (init = -4.335256)
t1: 1.32883916 +/- 0.13766047 (10.36%) (init = 1.309932)
t2: 11.7836194 +/- 0.47719763 (4.05%) (init = 11.82408)
__lnsigma: -2.32559226 +/- 0.04542650 (1.95%) (init = -2.302585)
```

```
[[Correlations]] (unreported correlations are < 0.100)
C(a2, t2) = 0.981
```

(continues on next page)
C(a2, t1) = -0.938
C(t1, t2) = -0.894
C(a1, t1) = -0.508
C(a1, a2) = 0.214
C(a1, t2) = 0.178

Maximum Likelihood Estimation from emcee

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MLE Value</th>
<th>Median Value</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>2.93839</td>
<td>2.98946</td>
<td>0.14034</td>
</tr>
<tr>
<td>a2</td>
<td>-4.35274</td>
<td>-4.34687</td>
<td>0.12131</td>
</tr>
<tr>
<td>t1</td>
<td>1.34310</td>
<td>1.32884</td>
<td>0.13766</td>
</tr>
<tr>
<td>t2</td>
<td>11.78782</td>
<td>11.78362</td>
<td>0.47720</td>
</tr>
</tbody>
</table>

Error Estimates from emcee
--
<table>
<thead>
<tr>
<th>Parameter</th>
<th>-2sigma</th>
<th>-1sigma</th>
<th>median</th>
<th>+1sigma</th>
<th>+2sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>-0.2656</td>
<td>-0.1362</td>
<td>2.9895</td>
<td>0.1445</td>
<td>0.3141</td>
</tr>
<tr>
<td>a2</td>
<td>-0.3209</td>
<td>-0.1309</td>
<td>-4.3469</td>
<td>0.1118</td>
<td>0.1985</td>
</tr>
<tr>
<td>t1</td>
<td>-0.2377</td>
<td>-0.1305</td>
<td>1.3288</td>
<td>0.1448</td>
<td>0.3278</td>
</tr>
<tr>
<td>t2</td>
<td>-1.0677</td>
<td>-0.4807</td>
<td>11.7836</td>
<td>0.4739</td>
<td>0.8990</td>
</tr>
</tbody>
</table>

<examples/doc_fitting_emcee.py>
import numpy as np
import matplotlib.pyplot as plt
import corner
try:
 import emcee
 HASPYLAB = True
except ImportError:
 HASPYLAB = False

try:
 import corner
 HASCORNER = True
except ImportError:
 HASCORNER = False
x = np.linspace(1, 10, 250)
np.random.seed(0)
y = (3.0*np.exp(-x/2) - 5.0*np.exp(-(x-0.1) / 10.) +
 0.1*np.random.randn(x.size))
if HASPYLAB:
 plt.plot(x, y, 'b')
plt.show()

p = lmfit.Parameters()
p.add_many(('a1', 4), ('a2', 4), ('t1', 3), ('t2', 3., True))
def residual(p):
 v = p.valuesdict()
 return v['a1'] * np.exp(-x / v['t1']) + v['a2'] * np.exp(-(x - 0.1) / v['t2']) - y

mi = lmfit.minimize(residual, p, method='nelder', nan_policy='omit')

if HASPYLAB:
 plt.figure()
 plt.plot(x, y, 'b')
 plt.plot(x, residual(mi.params) + y, 'r', label='best fit')
 plt.legend(loc='best')
 plt.show()

Place bounds on the ln(sigma) parameter that emcee will automatically add
to estimate the true uncertainty in the data since is_weighted=False
mi.params.add('lnsigma', value=np.log(0.1), min=np.log(0.001), max=np.log(2))

res = lmfit.minimize(residual, method='emcee', nan_policy='omit', burn=300,
 steps=1000, thin=20, params=mi.params, is_weighted=False, progress=False)

if HASPYLAB and HASCORNER:
 emcee_corner = corner.corner(res.flatchain, labels=res.var_names,
 truths=list(res.params.valuesdict().values()))
 plt.show()

if HASPYLAB:
 plt.plot(res.acceptance_fraction)
 plt.xlabel('walker')
 plt.ylabel('acceptance fraction')
 plt.show()

if hasattr(res, 'acor'):
 print("Autocorrelation time for the parameters:")
 print("--")
 for i, par in enumerate(p):
 print(par, res.acor[i])

print("\nmedian of posterior probability distribution")
print("--")
lmfit.report_fit(res.params)

find the maximum likelihood solution
highest_prob = np.amin(res.lnprob)
hp_loc = np.unravel_index(highest_prob, res.lnprob.shape)
mle_soln = res.chain[hp_loc]
for i, par in enumerate(p):
 p[par].value = mle_soln[i]

print("\nMaximum Likelihood Estimation from emcee")
print("--")
print("Parameter MLE Value Median Value Uncertainty")
fmt = '{:5s} {:11.5f} {:11.5f} {:11.5f}'.format
for name, param in p.items():
 print(fmt(name, param.value, res.params[name].value, 14.22. doc_fitting_emcee.py 269
res.params[name].stderr))

if HASPYLAB:
 plt.figure()
 plt.plot(x, y, 'b')
 plt.plot(x, residual(mi.params) + y, 'r', label='Nelder-Mead')
 plt.plot(x, residual(res.params) + y, 'k--', label='emcee')
 plt.legend()
 plt.show()

print('Error Estimates from emcee)
print('--
print('Parameter -2sigma -1sigma median +1sigma +2sigma ')

for name in p.keys():
 quantiles = np.percentile(res.flatchain[name],
 [2.275, 15.865, 50, 84.135, 97.275])
 median = quantiles[2]
 err_m2 = quantiles[0] - median
 err_m1 = quantiles[1] - median
 err_p1 = quantiles[3] - median
 err_p2 = quantiles[4] - median
 fmt = '{:5s} {:8.4f} {:8.4f} {:8.4f} {:8.4f} {:8.4f}'.format
 print(fmt(name, err_m2, err_m1, median, err_p1, err_p2))

Total running time of the script: (0 minutes 27.869 seconds)
PYTHON MODULE INDEX

lmfit.confidence, 123
lmfit.minimizer, 27
lmfit.model, 59
lmfit.models, 89
lmfit.parameter, 20
add() (Parameters method), 23
add_many() (Parameters method), 24
aic (in module lmfit.model), 79
aic (MinimizerResult attribute), 35
ampgo() (Minimizer method), 46
basinhopping() (Minimizer method), 46
best_fit (in module lmfit.model), 79
best_values (in module lmfit.model), 79
bic (in module lmfit.model), 79
bic (MinimizerResult attribute), 36
BreitWignerModel (class in lmfit.models), 95
brute() (Minimizer method), 45
call_kws (in module lmfit.model), 80
call_kws (MinimizerResult attribute), 35
chisqr (in module lmfit.model), 79
chisqr (MinimizerResult attribute), 35
ci_out (in module lmfit.model), 79
ci_report() (in module lmfit), 130
ci_report() (ModelResult method), 75
Composite models, 82
CompositeModel (class in lmfit.models), 85
covar (in module lmfit.model), 79
covar (MinimizerResult attribute), 34
DampedHarmonicOscillatorModel (class in lmfit.models), 97
DampedOscillatorModel (class in lmfit.models), 97
data (in module lmfit.model), 79
DoniachModel (class in lmfit.models), 101
dual_annealing() (Minimizer method), 48
dumps() (Parameters method), 25
dumps() (Parameters method), 25
emcee() (Minimizer method), 48
eval() (Model method), 63
eval() (ModelResult method), 74
eval() (Parameters method), 25
eval_components() (ModelResult method), 74
eval_uncertainty() (ModelResult method), 75
ExponentialGaussianModel (class in lmfit.models), 98
ExponentialModel (class in lmfit.models), 107
ExpressionModel (class in lmfit.models), 109
fit() (Model method), 64
fit() (ModelResult method), 74
fit_report() (in module lmfit.printfuncs), 38
fit_report() (ModelResult method), 74
flatchain (MinimizerResult attribute), 36
covar (in module lmfit.model), 66
Gaussian2dModel (class in lmfit.models), 108
GaussianModel (class in lmfit.models), 90
guess() (Model method), 65
ier (in module lmfit.model), 79
errorbars (in module lmfit.model), 79
errorbars (MinimizerResult attribute), 35
ier (MinimizerResult attribute), 35
independent_vars (in module lmfit.model), 66
init_fit (in module lmfit.model), 79
init_params (in module lmfit.model), 79
init_vals (MinimizerResult attribute), 34
init_values (in module lmfit.model), 79
init_values (MinimizerResult attribute), 34
iter_cb (in module lmfit.model), 79
jacfcn (in module lmfit.model), 79

273
Non-Linear Least-Squares Minimization and Curve-Fitting for Python, Release 1.0.2

L
least_squares() (Minimizer method), 43
leastsq() (Minimizer method), 43
LinearModel (class in lmfit.models), 102
lmdif_message (in module lmfit.model), 80
lmdif_message (MinimizerResult attribute), 35
lmfit.confidence
 module, 123
lmfit.minimizer
 module, 27
lmfit.model
 module, 59
lmfit.models
 module, 89
lmfit.parameter
 module, 20
load() (Parameters method), 26
load_model() (in module lmfit.model), 71
load_modelresult() (in module lmfit.model), 81
loads() (Parameters method), 25
LognormalModel (class in lmfit.models), 96
LorentzianModel (class in lmfit.models), 90

M
make_params() (Model method), 65
message (in module lmfit.model), 80
message (MinimizerResult attribute), 35
method (in module lmfit.model), 80
minimize() (in module lmfit.minimizer), 29
minimize() (Minimizer method), 41
Minimizer (class in lmfit.minimizer), 40
MinimizerResult (class in lmfit.minimizer), 34
Model (class in lmfit.model), 62
model (in module lmfit.model), 80
ModelResult (class in lmfit.model), 73
module
 lmfit.confidence, 123
 lmfit.minimizer, 27
 lmfit.model, 59
 lmfit.models, 89
 lmfit.parameter, 20
MoffatModel (class in lmfit.models), 93

N
name (in module lmfit.model), 66
nan_policy (in module lmfit.model), 66
ndata (in module lmfit.model), 80
ndata (MinimizerResult attribute), 35
nfev (in module lmfit.model), 80
nfev (MinimizerResult attribute), 35
nfree (in module lmfit.model), 80
nfree (MinimizerResult attribute), 35
nvarys (in module lmfit.model), 80
nvarys (MinimizerResult attribute), 35

O
opts (in module lmfit.model), 66

P
param_hints (in module lmfit.model), 66
param_names (in module lmfit.model), 66
Parameters (class in lmfit.parameter), 21
Parameters (class in lmfit.parameter), 23
params (in module lmfit.model), 80
params (MinimizerResult attribute), 34
Pearson7Model (class in lmfit.models), 94
plot() (ModelResult method), 76
plot_fit() (MinimizerResult method), 77
plot_residuals() (ModelResult method), 78
PolynomialModel (class in lmfit.models), 103
PowerLawModel (class in lmfit.models), 107
prefix (in module lmfit.model), 66
prepare_fit() (Minimizer method), 44
pretty_print() (Parameters method), 24
print_param_hints() (Model method), 66
PseudoVoigtModel (class in lmfit.models), 93

Q
QuadraticModel (class in lmfit.models), 103

R
RectangleModel (class in lmfit.models), 106
redchi (in module lmfit.model), 80
redchi (MinimizerResult attribute), 35
Removing a Constraint Expression, 22
residual (in module lmfit.model), 80
residual (MinimizerResult attribute), 35

S
save_model() (in module lmfit.model), 71
save_modelresult() (in module lmfit.model), 81
scalar_minimize() (Minimizer method), 43
scale_covar (in module lmfit.model), 80
set() (Parameter method), 22
set_param_hint() (Model method), 65
shgo() (Minimizer method), 48
show_candidates() (MinimizerResult method), 36
SineModel (class in lmfit.models), 104
SkewedGaussianModel (class in lmfit.models), 99
SkewedVoigtModel (class in lmfit.models), 99
SplitLorentzianModel (class in lmfit.models), 91
status (MinimizerResult attribute), 34
stdev (Parameter attribute), 22
StepModel (class in lmfit.models), 105
StudentsTModel (class in lmfit.models), 95
success (in module lmfit.model), 80

Index
success (MinimizerResult attribute), 35

T
ThermalDistributionModel (class in lmfit.models), 100

V
valuesdict () (Parameters method), 25
var_names (MinimizerResult attribute), 34
VoigtModel (class in lmfit.models), 92

W
weights (in module lmfit.model), 80